Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by M. Woo
Total Records ( 2 ) for M. Woo
  D Choi , A Radziszewska , S. A Schroer , N Liadis , Y Liu , Y Zhang , P. P. L Lam , L Sheu , Z Hao , H. Y Gaisano and M. Woo
 

Fas/Fas ligand belongs to the tumor necrosis factor superfamily of receptors/ligands and is best known for its role in apoptosis. However, recent evidence supports its role in other cellular responses, including proliferation and survival. Although Fas has been implicated as an essential mediator of β-cell death in the pathogenesis of type 1 diabetes, the essential role of Fas specifically in pancreatic β-cells has been found to be controversial. Moreover, the role of Fas on β-cell homeostasis and function is not clear. The objective of this study is to determine the role of Fas specifically in β-cells under both physiological and diabetes models. Mice with Fas deletion specifically in the β-cells were generated using the Cre-loxP system. Cre-mediated Fas deletion was under the control of the rat insulin promoter. Absence of Fas in β-cells leads to complete protection against FasL-induced cell death. However, Fas is not essential in determining β-cell mass or susceptibility to streptozotocin- or HFD-induced diabetes. Importantly, Fas deletion in β-cells leads to increased p65 expression, enhanced glucose tolerance, and glucose-stimulated insulin secretion, with increased exocytosis as manifested by increased changes in membrane capacitance and increased expression of Syntaxin1A, VAMP2, and munc18a. Together, our study shows that Fas in the β-cells indeed plays an essential role in the canonical death receptor-mediated apoptosis but is not essential in regulating β-cell mass or diabetes development. However, β-cell Fas is critical in the regulation of glucose homeostasis through regulation of the exocytosis machinery.

  D Choi and M. Woo
 

Pancreatic β-cell mass is dynamic and is regulated by β-cell proliferation, neogenesis, and apoptosis. Under physiological conditions, apoptosis is tightly regulated with a slow, net rise in β-cell mass over time. Excessive β-cell apoptosis is an important contributor to both type 1 and type 2 diabetes development. Therefore, much effort has been given recently to better understand the mechanisms of apoptosis that occur both during physiological homeostasis and during the course of both types of diabetes. Caspases are the executioners of apoptosis that ultimately result in cell suicide. In mammals, there are 14 caspases, of which many participate in the apoptotic pathways. Genetic mouse models have been important tools for elucidation of the specific apoptotic pathways that play an essential role in β-cell apoptosis under physiological and pathological conditions. This review focuses on the diverse roles of each of the specific caspases and their regulators, unveiling both the classical apoptotic roles as well as emerging nonapoptotic roles.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility