Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by M. Sixt
Total Records ( 2 ) for M. Sixt
  T Lammermann , J Renkawitz , X Wu , K Hirsch , C Brakebusch and M. Sixt

Mature dendritic cells (DCs) moving from the skin to the lymph node are a prototypic example of rapidly migrating amoeboid leukocytes. Interstitial DC migration is directionally guided by chemokines, but independent of specific adhesive interactions with the tissue as well as pericellular proteolysis. Instead, the protrusive flow of the actin cytoskeleton directly drives a basal mode of locomotion that is occasionally supported by actomyosin contractions at the trailing edge to propel the cell's rigid nucleus. We here delete the small GTPase Cdc42 in DCs and find that actin flow and actomyosin contraction are still initiated in response to chemotactic cues. Accordingly, the cells are able to polarize and form protrusions. However, in the absence of Cdc42 the protrusions are temporally and spatially dysregulated, which leads to impaired leading edge coordination. Although this defect still allows the cells to move on 2-dimensional surfaces, their in vivo motility is completely abrogated. We show that this difference is entirely caused by the geometric complexity of the environment, as multiple competing protrusions lead to instantaneous entanglement within 3-dimensional extracellular matrix scaffolds. This demonstrates that the decisive factor for migrating DCs is not specific interaction with the extracellular environment, but adequate coordination of cytoskeletal flow.

  H Pflicke and M. Sixt

Although both processes occur at similar rates, leukocyte extravasation from the blood circulation is well investigated, whereas intravasation into lymphatic vessels has hardly been studied. In contrast to a common assumption—that intra- and extravasation follow similar molecular principles—we previously showed that lymphatic entry of dendritic cells (DCs) does not require integrin-mediated adhesive interactions. In this study, we demonstrate that DC-entry is also independent of pericellular proteolysis, raising the question of whether lymphatic vessels offer preexisting entry routes. We find that the perilymphatic basement membrane of initial lymphatic vessels is discontinuous and therefore leaves gaps for entering cells. Using a newly developed in situ live cell imaging approach that allows us to dynamically visualize the cells and their extracellular environment, we demonstrate that DCs enter through these discontinuities, which are transiently mechanically dilated by the passaging cells. We further show that penetration of the underlying lymphatic endothelial layer occurs through flap valves lacking continuous intercellular junctions. Together, we demonstrate free cellular communication between interstitium and lymphatic lumen.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility