Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by M. Maeshima
Total Records ( 2 ) for M. Maeshima
  M Kawachi , Y Kobae , H Mori , R Tomioka , Y Lee and M. Maeshima

A mutant line of Arabidopsis thaliana that lacks a vacuolar membrane Zn2+/H+ antiporter MTP1 is sensitive to zinc. We examined the physiological changes in this loss-of-function mutant under high-Zn conditions to gain an understanding of the mechanism of adaptation to Zn stress. When grown in excessive Zn and observed using energy-dispersive X-ray analysis, wild-type roots were found to accumulate Zn in vacuolar-like organelles but mutant roots did not. The Zn content of mutant roots, determined by chemical analysis, was one-third that of wild-type roots grown in high-Zn medium. Severe inhibition of root growth was observed in mtp1-1 seedlings in 500 µM ZnSO4. Suppression of cell division and elonga-tion by excessive Zn was reversible and the cells resumed growth in normal medium. In mutant roots, a marked formation of reactive oxygen species (ROS) appeared in the meristematic zone, where the MTP1 gene was highly expressed. Zn treatment enhanced the expression of several genes involved in Zn tolerance: namely, the plasma membrane Zn2+-export ATPase, HMA4, and plasma and vacuolar membrane proton pumps. CuZn-superoxide dismutases, involved in the detoxification of ROS, were also induced. The expression of plasma membrane Zn-uptake transporter, ZIP1, was suppressed. The up- or down-regulation of these genes might confer the resistance to Zn toxicity. These results indicate an essential role of MTP1 in detoxification of excessive Zn and provide novel information on the latent adaptation mechanism to Zn stress, which is hidden by MTP1.

  M Hirono and M. Maeshima

H+-translocating pyrophosphatase converts energy from hydrolysis of pyrophosphate to active H+ transport across biomembranes. Mutational analysis of Streptomyces coelicolor A3(2) enzyme revealed that amino acid substitution of Phe-388 and Ala-514 altered the enzyme activity. Both residues are located at the interface between the transmembrane domains and cytosolic loops, in which the catalytic domain exists. Systematic amino acid substitution was carried out using the Escherichia coli heterologous expression system. Two of the 38 mutant enzymes, F388Y and A514S, showed a high ratio of H+-pump to substrate hydrolysis without decrease in the substrate hydrolysis activity, indicating high energy-coupling efficiency.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility