Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by M. Aschner
Total Records ( 3 ) for M. Aschner
  E. S. Y Lee , Z Yin , D Milatovic , H Jiang and M. Aschner
 

Chronic exposure to manganese (Mn) leads to a neurological disorder, manganism, which shares multiple common features with idiopathic Parkinson disease (IPD). 17β-Estradiol (E2) and some selective estrogen receptor modulators, including tamoxifen (TX), afford neuroprotection in various experimental models of neurodegeneration. However, the neuroprotective effects and mechanisms of E2/TX in Mn-induced toxicity have yet to be documented. Herein, we studied the ability of E2/TX to protect rat cortical primary neuronal and astroglial cultures from Mn-induced toxicity. Cell viability, Western blot, and reactive oxygen species (ROS) generation were assessed. Results established that both E2 (10nM) and TX (1µM) attenuated Mn-induced toxicity. The protective effects of E2/TX were more pronounced in astrocytes versus neurons. The E2-mediated attenuation of Mn-induced ROS generation in astrocytes at 6-h treatment (where no cell death was detected) was mediated by a classical estrogen receptor (ER) pathway and the TX-mediated effect on Mn-induced ROS generation was not mediated via classical ER-dependent mechanisms and likely by its antioxidant properties. The phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway was involved in both E2- and TX-induced attenuation of Mn-induced ROS formation (6 h) in astrocytes. Treatments with Mn for a longer duration (24 h) led to significant cell death, and the protective effects of E2 and TX were (1) not mediated by a classical ER pathway and (2) associated with activation of both mitogen-activated protein kinase/extracellular signal-regulated kinase and PI3K/Akt signaling pathways. Taken together, the results suggest that both E2 and TX offer effective therapeutic means for neuroprotection against Mn-induced toxicity.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility