Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by M. Y Chiang
Total Records ( 2 ) for M. Y Chiang
  Y Yashiro Ohtani , Y He , T Ohtani , M. E Jones , O Shestova , L Xu , T. C Fang , M. Y Chiang , A. M Intlekofer , S. C Blacklow , Y Zhuang and W. S. Pear

Precise control of the timing and magnitude of Notch signaling is essential for the normal development of many tissues, but the feedback loops that regulate Notch are poorly understood. Developing T cells provide an excellent context to address this issue. Notch1 signals initiate T-cell development and increase in intensity during maturation of early T-cell progenitors (ETP) to the DN3 stage. As DN3 cells undergo β-selection, during which cells expressing functionally rearranged TCRβ proliferate and differentiate into CD4+CD8+ progeny, Notch1 signaling is abruptly down-regulated. In this report, we investigate the mechanisms that control Notch1 expression during thymopoiesis. We show that Notch1 and E2A directly regulate Notch1 transcription in pre-β-selected thymocytes. Following successful β-selection, pre-TCR signaling rapidly inhibits Notch1 transcription via signals that up-regulate Id3, an E2A inhibitor. Consistent with a regulatory role for Id3 in Notch1 down-regulation, post-β-selected Id3-deficient thymocytes maintain Notch1 transcription, whereas enforced Id3 expression decreases Notch1 expression and abrogates Notch1-dependent T-cell survival. These data provide new insights into Notch1 regulation in T-cell progenitors and reveal a direct link between pre-TCR signaling and Notch1 expression during thymocyte development. Our findings also suggest new strategies for inhibiting Notch1 signaling in pathologic conditions.

  P Lu , I. L Hankel , J Knisz , A Marquardt , M. Y Chiang , J Grosse , R Constien , T Meyer , A Schroeder , L Zeitlmann , U Al Alem , A. D Friedman , E. I Elliott , D. K Meyerholz , T. J Waldschmidt , P. B Rothman and J. D. Colgan

A recessive mutation named Justy was found that abolishes B lymphopoiesis but does not impair other major aspects of hematopoiesis. Transplantation experiments showed that homozygosity for Justy prevented hematopoietic progenitors from generating B cells but did not affect the ability of bone marrow stroma to support B lymphopoiesis. In bone marrow from mutant mice, common lymphoid progenitors and pre-pro–B cells appeared normal, but cells at subsequent stages of B lymphopoiesis were dramatically reduced in number. Under culture conditions that promoted B lymphopoiesis, mutant pre-pro–B cells remained alive and began expressing the B cell marker CD19 but failed to proliferate. In contrast, these cells were able to generate myeloid or T/NK precursors. Genetic and molecular analysis demonstrated that Justy is a point mutation within the Gon4-like (Gon4l) gene, which encodes a protein with homology to transcriptional regulators. This mutation was found to disrupt Gon4l pre-mRNA splicing and dramatically reduce expression of wild-type Gon4l RNA and protein. Consistent with a role for Gon4l in transcriptional regulation, the levels of RNA encoding C/EBP and PU.1 were abnormally high in mutant B cell progenitors. Our findings indicate that the Gon4l protein is required for B lymphopoiesis and may function to regulate gene expression during this process.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility