Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by M. R Kelher
Total Records ( 2 ) for M. R Kelher
  P. C Eckels , A Banerjee , E. E Moore , N. J. D McLaughlin , L. M Gries , M. R Kelher , K. M England , F Gamboni Robertson , S. Y Khan and C. C. Silliman

Receptor signaling is integral for adhesion, emigration, phagocytosis, and reactive oxygen species production in polymorphonuclear neutrophils (PMNs). Priming is an important part of PMN emigration, but it can also lead to PMN-mediated organ injury in the host. Platelet-activating factor (PAF) primes PMNs through activation of a specific G protein-coupled receptor. We hypothesize that PAF priming of PMNs requires clathrin-mediated endocytosis (CME) of the PAF receptor (PAFr), and, therefore, amantadine, known to inhibit CME, significantly antagonizes PAF signaling. PMNs were isolated by standard techniques to >98% purity and tested for viability. Amantadine (1 mM) significantly inhibited the PAF-mediated changes in the cellular distribution of clathrin and the physical colocalization [fluorescence resonance energy transfer positive (FRET+)] of early endosome antigen-1 and Rab5a, known components of CME and similar to hypertonic saline, a known inhibitor of CME. Furthermore, amantadine had no effect on the PAF-induced cytosolic calcium flux; however, phosphorylation of p38 MAPK was significantly decreased. Amantadine inhibited PAF-mediated changes in PMN physiology, including priming of the NADPH oxidase and shape change with lesser inhibition of increases in CD11b surface expression and elastase release. Furthermore, rimantadine, an amantadine analog, was a more potent inhibitor of PAF priming of the N-formyl-methionyl-leucyl-phenylalanine-activated oxidase. PAF priming of PMNs requires clathrin-mediated endocytosis that is inhibited when PMNs are pretreated with either amantadine or rimantadine. Thus, amantadine and rimantadine have the potential to ameliorate PMN-mediated tissue damage in humans.

  C. C Silliman , M. R Kelher , F Gamboni Robertson , C Hamiel , K. M England , C. A Dinarello , T. H Wyman , S. Y Khan , N. J. D McLaughlin , R. S Bercovitz and A. Banerjee

Neutrophils (PMNs) are a vital part of host defense and are the principal leukocyte in innate immunity. Interleukin (IL)-18 is a proinflammatory cytokine with roles in both innate and adaptive immunity. We hypothesize that PMNs contain preformed IL-18, which is released in response to specific inflammatory stimuli. Isolated PMNs were stimulated with a battery of chemoattractants (5 min to 24 h), and IL-18 release was measured. PMNs were also separated into subcellular fractions and immunoblotted with antibodies against IL-18 or were fixed and probed with antibodies to IL-18 as well as to the contents of granules, intracellular organelles, and filamentous actin (F-actin), incubated with fluorescent secondary antibodies, and examined by digital microscopy. Quiescent PMNs contained IL-18 in the cytoplasm, associated with F-actin, as determined by positive fluorescence resonance energy transfer (FRET+). In turn, TNF- stimulation disrupted the association of IL-18 with F-actin, induced a FRET+ interaction of IL-18 with lipid rafts, and elicited IL-18 release. Manipulation of F-actin status confirmed the relationship between IL-18 and F-actin in resting PMNs. Consequently, incubation with monomeric IL-18 binding protein inhibited TNF--mediated priming of the PMN oxidase. We conclude that human PMNs contain IL-18 associated with F-actin in the cytoplasm and TNF- stimulation causes dissociation of IL-18 from F-actin, association with lipid rafts, and extracellular release. Extracellular IL-18 participates in TNF- priming of the PMN oxidase as demonstrated by inhibition with the IL-18 binding protein.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility