Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by M. J. Donoghue
Total Records ( 2 ) for M. J. Donoghue
  H. A North , X Zhao , S. M Kolk , M. A Clifford , D. M Ziskind and M. J. Donoghue
  Hilary A. North, Xiumei Zhao, Sharon M. Kolk, Meredith A. Clifford, Daniela M. Ziskind, and Maria J. Donoghue

Eph receptors are widely expressed during cerebral cortical development, yet a role for Eph signaling in the generation of cells during corticogenesis has not been shown. Cortical progenitor cells selectively express one receptor, EphA4, and reducing EphA4 signaling in cultured progenitors suppressed proliferation, decreasing cell number. In vivo, EphA4-/- cortex had a reduced area, fewer cells and less cell division compared with control cortex. To understand the effects of EphA4 signaling in corticogenesis, EphA4-mediated signaling was selectively depressed or elevated in cortical progenitors in vivo. Compared with control cells, cells with reduced EphA4 signaling were rare and mitotically inactive. Conversely, overexpression of EphA4 maintained cells in their progenitor states at the expense of subsequent maturation, enlarging the progenitor pool. These results support a role for EphA4 in the autonomous promotion of cell proliferation during corticogenesis. Although most ephrins were undetectable in cortical progenitors, ephrin B1 was highly expressed. Our analyses demonstrate that EphA4 and ephrin B1 bind to each other, thereby initiating signaling. Furthermore, overexpression of...

  D. G Howarth and M. J. Donoghue
 

The genetics underlying flower symmetry shifts between radial and bilateral symmetry has been intensively studied in the model Antirrhinum majus. Understanding the conservation or diversification of this genetic pathway in other plants is of special interest in understanding angiosperm evolution and ecology. Evidence from Antirrhinum indicates that TCP and MYB transcription factors, especially CYCLOIDEA (CYC), DICHOTOMA (DICH), DIVARICATA (DIV), and RADIALIS (RAD) play a role in specifying dorsal identity (CYC, DICH, and RAD) and ventral identity (DIV) in the corolla and androecium of monosymmetric (bilateral) flowers. Previous data indicate that the ECE clade of TCP genes (including CYC and DICH) underwent two duplication events around the diversification of the core eudicots. In this study, we examined the duplication events within Dipsacales, which contains both radially and bilaterally symmetrical flowered species. Additionally, we report here the phylogenetic relationships of the DIV-like genes across core eudicots. Like TCP genes, we found three core eudicot clades of DIV-like genes, with duplications occurring around the diversification of the core eudicots, which we name DIV1, DIV2, and DIV3. The Antirrhinum genes, DIVARICATA and its sister DVL1, fall into the DIV1 clade. We also found additional duplications within these clades in Dipsacales. Specifically, the Caprifoliaceae (bilaterally symmetrical clade) duplicated independently in each of the three core eudicot DIV clades. Using reverse transcription polymerase chain reaction (rtPCR), we showed that most of these copies are expressed across floral tissues in the Dipsacales species Heptacodium miconioides. One copy, DipsDIV1A (orthologous to DIV and DVL1), was expressed in a dorsal–ventral pattern. DipsDIV1A was expressed only in petal tissue, in both dorsal and ventral regions but was lacking from lateral petals. We argue that this suggests that DipsDIV1A may be expressed in a similar pattern to DIV in Antirrhinum, suggesting a broad conservation of this pathway. Finally, DIV contains a large intron near the beginning of the second MYB domain, which shows promise as a highly variable molecular marker for phylogenetic studies.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility