Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by M. J Ackerman
Total Records ( 4 ) for M. J Ackerman
  M. J Ackerman and P. J. Mohler

Over the past 15 years, gene mutations in cardiac ion channels have been linked to a host of potentially fatal human arrhythmias including long QT syndrome, short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia. More recently, a new paradigm for human arrhythmia has emerged based on gene mutations that affect the activity of cardiac ion channel- and transporter- associated proteins. As part of the Circulation Research thematic series on inherited arrhythmias, this review focuses on the emerging field of human arrhythmias caused by dysfunction in cytosolic gene products (including ankyrins, yotiao, syntrophin, and caveolin-3) that regulate the activities of key membrane ion channels and transporters.

  A. L Vega , D. J Tester , M. J Ackerman and J. C. Makielski

Background— KCNJ2 encodes Kir2.1, a pore-forming subunit of the cardiac inward rectifier current, IK1. KCNJ2 mutations are associated with Andersen-Tawil syndrome and catecholaminergic polymorphic ventricular tachycardia. The aim of this study was to characterize the biophysical and cellular phenotype of a KCNJ2 missense mutation, V227F, found in a patient with catecholaminergic polymorphic ventricular tachycardia.

Methods and Results— Kir2.1-wild-type (WT) and V227F channels were expressed individually and together in Cos-1 cells to measure IK1 by voltage clamp. Unlike typical Andersen-Tawil syndrome-associated KCNJ2 mutations, which show dominant negative loss of function, Kir2.1WT+V227F coexpression yielded IK1 indistinguishable from Kir2.1-WT under basal conditions. To simulate catecholamine activity, a protein kinase A (PKA)-stimulating cocktail composed of forskolin and 3-isobutyl-1-methylxanthine was used to increase PKA activity. This PKA-simulated catecholaminergic stimulation caused marked reduction of outward IK1 compared with Kir2.1-WT. PKA-induced reduction in IK1 was eliminated by mutating the phosphorylation site at serine 425 (S425N).

Conclusions— Heteromeric Kir2.1-V227F and WT channels showed an unusual latent loss of function biophysical phenotype that depended on PKA-dependent Kir2.1 phosphorylation. This biophysical phenotype, distinct from typical Andersen-Tawil syndrome mutations, suggests a specific mechanism for PKA-dependent IK1 dysfunction for this KCNJ2 mutation, which correlates with adrenergic conditions underlying the clinical arrhythmia.

  R Rubinshtein , J. F Glockner , S. R Ommen , P. A Araoz , M. J Ackerman , P Sorajja , J. M Bos , A. J Tajik , U. S Valeti , R. A Nishimura and B. J. Gersh

Background— Myocardial late gadolinium enhancement (LGE) on contrast-enhanced magnetic resonance imaging (CE-MRI) of patients with hypertrophic cardiomyopathy (HCM) has been suggested to represent intramyocardial fibrosis and, as such, an adverse prognostic risk factor. We evaluated the characteristics of LGE on CE-MRI and explored whether LGE among patients with HCM was associated with genetic testing, severe symptoms, ventricular arrhythmias, or sudden cardiac death (SCD).

Methods and Results— Four hundred twenty-four patients with HCM (age=55±16 years [range 2 to 90], 41% females), without a history of septal ablation/myectomy, underwent CE-MRI (GE 1.5 Tesla). We evaluated the relation between LGE and HCM genes status, severity of symptoms, and the degree of ventricular ectopy on Holter ECG. Subsequent SCD and appropriate implanted cardioverter defibrillator (ICD) therapies were recorded during a mean follow-up of 43±14 months (range 16 to 94). Two hundred thirty-nine patients (56%) had LGE on CE-MRI, ranging from 0.4% to 65% of the left ventricle. Gene-positive patients were more likely to have LGE (P<0.001). The frequencies of New York Heart Association class ≥3 dyspnea and angina class ≥3 were similar in patients with and without LGE (125 of 239 [52%] versus 94 of 185 [51%] and 24 of 239 [10%] versus 18 of 185 [10%], respectively, P=NS). LGE-positive patients were more likely to have episodes of nonsustained ventricular tachycardia (34 of 126 [27%] versus 8 of 94 [8.5%], P<0.001), had more episodes of nonsustained ventricular tachycardia per patient (4.5±12 versus 1.1±0.3, P=0.04), and had higher frequency of ventricular extrasystoles/24 hours (700±2080 versus 103±460, P=0.003). During follow-up, SCD occurred in 4 patients, and additional 4 patients received appropriate ICD discharges. All 8 patients were LGE positive (event rate of 0.94%/y, P=0.01 versus LGE negative). Two additional heart failure-related deaths were recorded among LGE-positive patients. Univariate associates of SCD or appropriate ICD discharge were positive LGE (P=0.002) and presence of nonsustained ventricular tachycardia (P=0.04). The association of LGE with events remained significant after controlling for other risk factors.

Conclusions— In patients with HCM, presence of LGE on CE-MRI was common and more prevalent among gene-positive patients. LGE was not associated with severe symptoms. However, LGE was strongly associated with surrogates of arrhythmia and remained a significant associate of subsequent SCD and/or ICD discharge after controlling for other variables. If replicated, LGE may be considered an important risk factor for sudden death in patients with HCM.

  A Garbino , R. J van Oort , S. S Dixit , A. P Landstrom , M. J Ackerman and X. H. T. Wehrens

Junctophilins (JPHs) are members of a junctional membrane complex protein family important for the physical approximation of plasmalemmal and sarcoplasmic/endoplasmic reticulum membranes. As such, JPHs facilitate signal transduction in excitable cells between plasmalemmal voltage-gated calcium channels and intracellular calcium release channels. To determine the molecular evolution of the JPH gene family, we performed a phylogenetic analysis of over 60 JPH genes from over 40 species and compared conservation across species and different isoforms. We found that JPHs are evolutionary highly conserved, in particular the membrane occupation and recognition nexus motifs found in all species. Our data suggest that an ancestral form of JPH arose at the latest in a common metazoan ancestor and that in vertebrates four isoforms arose, probably following two rounds of whole genome duplications. By combining multiple prediction techniques with sequence alignments, we also postulate the presence of new important functional regions and candidate sites for posttranslational modifications. The increasing number of available sequences yields significant insight into the molecular evolution of JPHs. Our analysis is consistent with the emerging concept that JPHs serve dual important functions in excitable cells: structural assembly of junctional membrane complexes and regulation of intracellular calcium signaling pathways.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility