Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by M. E. Frank
Total Records ( 2 ) for M. E. Frank
  B. K Formaker , H Lin , T. P Hettinger and M. E. Frank
 

Studies of taste receptor cells, chorda tympani (CT) neurons, and brainstem neurons show stimulus interactions in the form of inhibition or enhancement of the effectiveness of sucrose when mixed with acids or citrate salts, respectively. To investigate further the effects of acids and the trivalent citrate anion on sucrose responses in hamsters (Mesocricetus auratus), we recorded multifiber CT responses to 100 mM sucrose; a concentration series of HCl, citric acid, acetic acid, sodium citrate (with and without amiloride added), potassium citrate, and all binary combinations of acids and salts with 100 mM sucrose. Compared with response additivity, sucrose responses were increasingly suppressed in acid + sucrose mixtures with increases in titratable acidity, but HCl and citric acid were more effective suppressors than acetic acid. Citrate salts suppressed sucrose responses and baseline CT neural activity to a similar degree. Citrate salts also elicited prolonged, concentration-dependent, water-rinse responses. The specific loss in sucrose effectiveness as a CT stimulus with increasing titratable acidity was confirmed; however, no increase in sucrose effectiveness was found with the addition of citrate. Further study is needed to define the chemical basis for effects of acids and salts in taste mixtures.

  M. F Wang , L. E Marks and M. E. Frank
 

Coding of the complex tastes of ionic stimuli in humans was studied by combining taste confusion matrix (TCM) methodology and treatment with chlorhexidine gluconate. The TCM evaluates discrimination of multiple stimuli simultaneously. Chlorhexidine, a bis-biguanide antiseptic, reversibly inhibits salty taste and tastes of a subset of bitter stimuli, including quinine hydrochloride. Identifications of salty (NaCl, "salt"), bitter (quinine·HCl, "quinine"), sweet (sucrose, "sugar"), and sour (citric acid, "acid") prototypes, alone and as components of binary mixtures, were measured under 4 conditions. One was a water-rinse control and the others had the salt and quinine tastes progressively reduced by treatment with 1 mM chlorhexidine, 3 mM chlorhexidine, and ultimately to zero by elimination of NaCl and quinine·HCl. Treatment with chlorhexidine perturbed identification of salt more than quinine; both were thereafter more often confused with "water" and unidentified when mixed with sucrose or citric acid. All pairwise discriminations that depended on the tastes of NaCl and quinine·HCl deteriorated, and although H2O was mistakenly identified as quinine after chlorhexidine, this may have been a decisional bias. Other confusions reflected "unprompted mixture analysis" and an obscuring of salt taste by a less-inhibited stronger quinine or sugar or acid tastes in mixtures. Partial inhibition of the tastes of NaCl and quinine·HCl by chlorhexidine was considered in the context of multiple receptors for the 2 compounds. Discrimination among prototypic stimuli with varying strengths was consistent with a gustatory system that evaluates a small number of independent tastes.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility