Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by M Zheng
Total Records ( 6 ) for M Zheng
  B Lu , N Congdon , X Liu , K Choi , D. S. C Lam , M Zhang , M Zheng , Z Zhou , L Li , A Sharma and Y. Song

Objective  To study the associations between near work, outdoor activity, and myopia among children attending secondary school in rural China.

Methods  Among a random cluster sample of 1892 children in Xichang, China, subjects with an uncorrected acuity of 6/12 or less in either eye (n = 984) and a 25% sample of children with normal vision (n = 248) underwent measurement of refractive error. Subjects were administered a questionnaire on parental education, time spent outdoors, and weekly time spent engaged in and preferred working distance for a variety of near-work activities.

Results  Among 1232 children with refraction data, 998 (81.0%) completed the near-work survey. Their mean age was 14.6 years (SD, 0.8 years), 55.6% were girls, and 83.1% had myopia of –0.5 diopters or less (more myopia) in both eyes. Time and diopter-hours spent on near activities did not differ between children with and without myopia. In regression models, time spent on near activities and time outdoors were unassociated with myopia, adjusting for age, sex, and parental education.

Conclusions  These and other recent results raise some doubts about the association between near work and myopia. Additional efforts to identify other environmental factors associated with myopia risk and that may be amenable to intervention are warranted.

  W Peng , Y Zhang , M Zheng , H Cheng , W Zhu , C. M Cao and R. P. Xiao

Rationale: Ca2+/calmodulin-dependent protein kinase (CaMK)II is a multifunctional kinase involved in vital cellular processes such as Ca2+ handling and cell fate regulation. In mammalian heart, 2 primary CaMKII isoforms, B and C, localize in nuclear and cytosolic compartments, respectively. Although previous studies have established an essential role of CaMKII-C in cardiomyocyte apoptosis, the functional role of the more abundant isoform, CaMKII-B, remains elusive.

Objective: Here, we determined the potential role of CaMKII-B in regulating cardiomyocyte viability and explored the underlying mechanism.

Methods and Results: In cultured neonatal rat cardiomyocytes, the expression of CaMKII-B and CaMKII-C was inversely regulated in response to H2O2-induced oxidative stress with a profound reduction of the former and an increase of the later. Similarly, in vivo ischemia/reperfusion (IR) led to an opposite regulation of these CaMKII isoforms in a rat myocardial IR model. Notably, overexpression of CaMKII-B protected cardiomyocytes against oxidative stress-, hypoxia-, and angiotensin II-induced apoptosis, whereas overexpression of its cytosolic counterpart promoted apoptosis. Using cDNA microarray, real-time PCR and Western blotting, we demonstrated that overexpression of CaMKII-B but not CaMKII-C elevated expression of heat shock protein (HSP)70 family members, including inducible (i)HSP70 and its homolog (Hst70). Moreover, overexpression of CaMKII-B led to phosphorylation and activation of heat shock factor (HSF)1, the primary transcription factor responsible for HSP70 gene regulation. Importantly, gene silencing of iHSP70, but not Hst70, abolished CaMKII-B-mediated protective effect, indicating that only iHSP70 was required for CaMKII-B elicited antiapoptotic signaling.

Conclusions: We conclude that cardiac CaMKII-B and CaMKII-C were inversely regulated in response to oxidative stress and IR injury, and that in contrast to CaMKII-C, CaMKII-B serves as a potent suppressor of cardiomyocyte apoptosis triggered by multiple death-inducing stimuli via phosphorylation of HSF1 and subsequent induction of iHSP70, marking both CaMKII- isoforms as promising therapeutic targets for the treatment of ischemic heart disease.

  X Wang , W Xie , Y Zhang , P Lin , L Han , P Han , Y Wang , Z Chen , G Ji , M Zheng , N Weisleder , R. P Xiao , H Takeshima , J Ma and H. Cheng

Rationale: Unrepaired cardiomyocyte membrane injury causes irreplaceable cell loss, leading to myocardial fibrosis and eventually heart failure. However, the cellular and molecular mechanisms of cardiac membrane repair are largely unknown. MG53, a newly identified striated muscle-specific protein, is involved in skeletal muscle membrane repair. But the role of MG53 in the heart has not been determined.

Objective: We sought to investigate whether MG53 mediates membrane repair in cardiomyocytes and, if so, the cellular and molecular mechanism underlying MG53-mediated membrane repair in cardiomyocytes. Moreover, we determined possible cardioprotective effect of MG53-mediated membrane repair.

Methods and Results: We demonstrated that MG53 is crucial to the emergency membrane repair response in cardiomyocytes and protects the heart from stress-induced loss of cardiomyocytes. Disruption of the sarcolemmal membrane by mechanical, electric, chemical, or metabolic insults caused rapid and robust translocation of MG53 toward the injury sites. Ablation of MG53 prevented sarcolemmal resealing after infrared laser–induced membrane damage in intact heart, and exacerbated mitochondrial dysfunction and loss of cardiomyocytes during ischemia/reperfusion injury. Unexpectedly, the MG53-mediated cardiac membrane repair was mediated by a cholesterol-dependent mechanism: depletion of membrane cholesterol abolished, and its recovery restored injury-induced membrane translocation of MG53. The redox status of MG53 did not affect initiation of MG53 translocation, whereas MG53 oxidation conferred stability to the membrane repair patch.

Conclusions: Thus, cholesterol-dependent MG53-mediated membrane repair is a vital, heretofore unappreciated cardioprotective mechanism against a multitude of insults and may bear important therapeutic implications.

  M Zheng , W Liang , H Yu and Y. Xiao

In the following paper, we study the tradeoff between network utility and network lifetime for energy-constrained wireless sensor networks (WSNs). By introducing a weighted factor, we combine these two objectives into a single weighted objective, and we consider rate control and routing in this tradeoff framework simultaneously. First, by using a dual decomposition method, we decompose the tradeoff model into two subproblems: the congestion control/routing problem and the network lifetime problem, both of which interact through the dual variables for energy dissipation constraints. Based on the decomposition results, we propose a fully distributed algorithm to solve these two sub-problems and the dual problem by using gradient and sub-gradient projection methods. Second, we propose a fully distributed algorithm by approximating the network lifetime maximization problem by using the network utility maximization (NUM) framework. Third, we extend our distributed algorithm to deal with reliable communication and the real-time requirement. Rigorous analysis and simulations are presented to validate our algorithms.

  H. H Liu , P Lu , Y Guo , E Farrell , X Zhang , M Zheng , B Bosano , Z Zhang , J Allard , G Liao , S Fu , J Chen , K Dolim , A Kuroda , J Usuka , J Cheng , W Tao , K Welch , Y Liu , J Pease , S. A de Keczer , M Masjedizadeh , J. S Hu , P Weller , T Garrow and G. Peltz

Acetaminophen-induced liver toxicity is the most frequent precipitating cause of acute liver failure and liver transplant, but contemporary medical practice has mainly focused on patient management after a liver injury has been induced. An integrative genetic, transcriptional, and two-dimensional NMR-based metabolomic analysis performed using multiple inbred mouse strains, along with knowledge-based filtering of these data, identified betaine-homocysteine methyltransferase 2 (Bhmt2) as a diet-dependent genetic factor that affected susceptibility to acetaminophen-induced liver toxicity in mice. Through an effect on methionine and glutathione biosynthesis, Bhmt2 could utilize its substrate (S-methylmethionine [SMM]) to confer protection against acetaminophen-induced injury in vivo. Since SMM is only synthesized in plants, Bhmt2 exerts its beneficial effect in a diet-dependent manner. Identification of Bhmt2 and the affected biosynthetic pathway demonstrates how a novel method of integrative genomic analysis in mice can provide a unique and clinically applicable approach to a major public health problem.

  D Cho , M Zheng , C Min , L Ma , H Kurose , J. H Park and K. M. Kim

The regulatory mechanisms and functional roles of agonist-induced internalization of G protein-coupled receptors (GPCRs) were analyzed using mutant dopamine D2 receptors (D2Rs) in which all possible GPCR kinase (GRK) phosphorylation sites were mutated or the affinity for β-arrestins was altered. Agonist-induced internalization of D2Rs involved a phosphorylation-dependent component, which was mediated by serine/threonine (S/T) residues in the second loop and T225 in the third loop, and a phosphorylation-independent component. GRK2-mediated enhancement of the internalization and inhibition of D2R signaling did not involve receptor phosphorylation, and only the former required the enzymatic activity of GRK2. The phosphorylation-deficient mutant (D2R-intracellular loop 2/3) recycled more slowly and showed more agonist-induced desensitization than did the wild-type D2R, suggesting that receptor phosphorylation mediates the recycling of the internalized receptors and enhances receptor resensitization. Blockade of the agonist-induced internalization of D2R-intracellular loop 2/3 provoked desensitization as in wild-type D2R, suggesting that certain cellular processes other than receptor dephosphorylation occurring within the endocytic vesicle are responsible for the resensitization of D2R. When dissociation between D2R and β-arrestin was inhibited or when the expression of cellular β-arrestins was decreased, agonist-induced desensitization of D2R did not occur, suggesting that dissociation from β-arrestin is the main cellular process required for resensitization of D2R and is achieved through agonist-induced internalization. These results indicate that, in the regulation of some GPCRs, phosphorylation-independent association with β-arrestin plays a major role in agonist-induced desensitization.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility