Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by M Yokoyama
Total Records ( 3 ) for M Yokoyama
  M Terashima , Y Ohashi , H Azumi , K Otsui , H Kaneda , K Awano , S Kobayashi , T Honjo , T Suzuki , K Maeda , M Yokoyama and N. Inoue
 

Background— Coronary arterial remodeling, which is a response to the growth of atherosclerotic plaques, is associated with plaque vulnerability. Oxidative stress induced by reactive oxygen species (ROS) via NAD(P)H oxidase in the vasculature also plays a crucial role in the pathogenesis of atherosclerosis-based cardiovascular disease. In this study, the relationship between coronary arterial remodeling and ROS generation was examined by comparing preinterventional intravascular ultrasound findings of atherosclerotic lesions to the histochemical findings of corresponding specimens obtained by directional coronary atherectomy.

Methods and Results— Predirectional coronary atherectomy intravascular ultrasound images of 49 patients were analyzed. The remodeling index was calculated by dividing the target-lesion external elastic membrane cross-sectional area by the reference-segment external elastic membrane cross-sectional area. Expansive remodeling was defined as a remodeling index of >1.0. ROS generation and NAD(P)H oxidase p22phox expression in directional coronary atherectomy specimens were evaluated using the dihydroethidium staining method and immunohistochemistry as the ratio of the positive area to the total surface area in each specimen, respectively. ROS generation and p22phox expression were significantly greater in lesions with expansive remodeling than in lesions without remodeling (0.18±0.12 versus 0.03±0.02, P<0.0001, 0.10±0.08 versus 0.04±0.05, P=0.0039, respectively). Both ROS generation and p22phox expression significantly correlated with the intravascular ultrasound-derived remodeling index (r=0.77, P<0.0001, r=0.53, P<0.0001, respectively).

Conclusions— Simultaneous examination with intravascular ultrasound and immunohistochemistry analyses suggests that NAD(P)H oxidase-derived ROS is related to the coronary arterial remodeling process associated with plaque vulnerability.

  H Ageta , S Ikegami , M Miura , M Masuda , R Migishima , T Hino , N Takashima , A Murayama , H Sugino , M Setou , S Kida , M Yokoyama , Y Hasegawa , K Tsuchida , T Aosaki and K. Inokuchi
 

A recent study has revealed that fear memory may be vulnerable following retrieval, and is then reconsolidated in a protein synthesis-dependent manner. However, little is known about the molecular mechanisms of these processes. Activin βA, a member of the TGF-β superfamily, is increased in activated neuronal circuits and regulates dendritic spine morphology. To clarify the role of activin in the synaptic plasticity of the adult brain, we examined the effect of inhibiting or enhancing activin function on hippocampal long-term potentiation (LTP). We found that follistatin, a specific inhibitor of activin, blocked the maintenance of late LTP (L-LTP) in the hippocampus. In contrast, administration of activin facilitated the maintenance of early LTP (E-LTP). We generated forebrain-specific activin- or follistatin-transgenic mice in which transgene expression is under the control of the Tet-OFF system. Maintenance of hippocampal L-LTP was blocked in the follistatin-transgenic mice. In the contextual fear-conditioning test, we found that follistatin blocked the formation of long-term memory (LTM) without affecting short-term memory (STM). Furthermore, consolidated memory was selectively weakened by the expression of follistatin during retrieval, but not during the maintenance phase. On the other hand, the maintenance of memory was also influenced by activin overexpression during the retrieval phase. Thus, the level of activin in the brain during the retrieval phase plays a key role in the maintenance of long-term memory.

  Y Kayama , T Minamino , H Toko , M Sakamoto , I Shimizu , H Takahashi , S Okada , K Tateno , J Moriya , M Yokoyama , A Nojima , M Yoshimura , K Egashira , H Aburatani and I. Komuro
 

To identify a novel target for the treatment of heart failure, we examined gene expression in the failing heart. Among the genes analyzed, Alox15 encoding the protein 12/15 lipoxygenase (LOX) was markedly up-regulated in heart failure. To determine whether increased expression of 12/15-LOX causes heart failure, we established transgenic mice that overexpressed 12/15-LOX in cardiomyocytes. Echocardiography showed that Alox15 transgenic mice developed systolic dysfunction. Cardiac fibrosis increased in Alox15 transgenic mice with advancing age and was associated with the infiltration of macrophages. Consistent with these observations, cardiac expression of monocyte chemoattractant protein 1 (MCP-1) was up-regulated in Alox15 transgenic mice compared with wild-type mice. Treatment with 12-hydroxy-eicosatetraenoic acid, a major metabolite of 12/15-LOX, increased MCP-1 expression in cardiac fibroblasts and endothelial cells but not in cardiomyocytes. Inhibition of MCP-1 reduced the infiltration of macrophages into the myocardium and prevented both systolic dysfunction and cardiac fibrosis in Alox15 transgenic mice. Likewise, disruption of 12/15-LOX significantly reduced cardiac MCP-1 expression and macrophage infiltration, thereby improving systolic dysfunction induced by chronic pressure overload. Our results suggest that cardiac 12/15-LOX is involved in the development of heart failure and that inhibition of 12/15-LOX could be a novel treatment for this condition.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility