Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by M Yasumoto
Total Records ( 2 ) for M Yasumoto
  Y Miyake , M Yasumoto , S Tsuzuki , T Fushiki and K. Inouye

Matriptase is a type II transmembrane serine protease. The activation (i.e. conversion of the single-chain pro-form to the disulphide-linked-two-chain active form) of this enzyme is known to occur via a mechanism requiring its catalytic triad. We reported previously that the activated enzyme was produced in the conditioned medium when full-length rat matriptase was expressed in monkey kidney COS-1 cells. The present study aimed to address when and where the matriptase activation occurs. COS-1 cells expressing matriptase were labelled with a membrane-impermeable biotin derivative and then solubilized with Triton. Both activated and non-activated matriptase molecules were detected in the avidin precipitants of Triton extracts, whereas only the non-activated molecules were detected in the flow-through fraction of avidin-precipitation procedure. Single-chain matriptase has been thought to have an inherent activity. Indeed, a secreted single-chain variant of recombinant matriptase bearing mutation at the activation-cleavage site was found to exhibit the activity in hydrolyzing a synthetic peptide substrate at pH 7.5. However, the variant had little activity at pH 5.5, as found in the lumen of post-Golgi secretory vesicles. Altogether, it is concluded that the activation of matriptase may occur when the enzyme reaches the cell surface.

  K Inouye , M Yasumoto , S Tsuzuki , S Mochida and T. Fushiki

Matriptase is a transmembrane serine protease that is strongly expressed in epithelial cells. The single-chain zymogen of matriptase is considered to have inherent activity, leading to its own activation (i.e. conversion to the disulphide-linked-two-chain form by cleavage after Thr–Lys–Gln–Ala–Arg614). Also, there is growing evidence that the activation of zymogen occurs at the cell surface and in relation to the acidification and lowering of ionic strength within cell-surface microenvironments. The present study aimed to provide evidence for the involvement of zymogen activity in its activation in physiologically relevant cellular contexts. For this purpose, the activity of a pseudozymogen form of recombinant matriptase (HL-matriptase zymogen) was examined using acetyl-l-Lys–l-Thr–l-Lys–l-Gln–l-Leu–l-Arg–4-methyl-coumaryl-7-amide as a substrate. HL-matriptase zymogen exhibited optimal activity toward the substrate pH ~6.0. The substrate hydrolysis at the pH value was hardly detected when NaCl was present at a concentration of 145 mM. In a buffer of pH 6.0 containing 5 mM NaCl, the activity of HL-matriptase zymogen was only ~30-times lower than that of the respective two-chain form. These findings suggest that the in vivo activation of matriptase zymogen occurs via a mechanism involving the zymogen activity.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility