Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by M Xu
Total Records ( 7 ) for M Xu
  C Sun , M Xu , Z Xing , Z Wu , Y Li , T Li and M. Zhao
 

Lissencephaly is a severe disease characterized by brain malformation. The main causative gene of lissencephaly is LIS1. Mutation or deletion of LIS1 leads to proliferation and migration deficiency of neurons in brain development. However, little is known about its biological function in embryonic development. In this article, we identified the expression patterns of zebrafish LIS1 gene and investigated its function in embryonic development. We demonstrated that zebrafish consisted of two LIS1 genes, LIS1a and LIS1b. Bioinformatics analysis revealed that LIS1 genes were conserved in evolution both in protein sequences and genomic structures. The expression patterns of zebrafish LIS1a and LIS1b showed that both transcripts were ubiquitously expressed at all embryonic developmental stages and in adult tissues examined. At the protein level, the LIS1 products mainly exist in brain tissue and in embryos at early stages as shown by western blotting analysis. The whole-mount immunostaining data showed that LIS1 proteins were distributed all over the embryos from 1-cell stage to 5 day post-fertilization. Knockdown of LIS1 protein expression through morpholino antisense oligonucleotides resulted in many developmental deficiencies in zebrafish, including brain malformation, circulation abnormality, and body curl. Taken together, our study suggested that zebrafish LIS1 plays a very important role in embryonic development.

  J Wei , M Xu , D Zhang and H. Mi
 

Carotenoid isomerase (CRTISO) has been suggested to protect photosystem II (PS II) from photodamage, probably through its product lutein. However, the mechanism of the photoprotection still remains to be further elucidated. In this work, we cloned a point mutated gene reported to encode a CRTISO which is responsible for the accumulation of lutein in rice mutant zel1 by a map-based cloning approach. The mutant phenotype was rescued by transformation with the corresponding gene of the wild type (WT). The activity of photosynthetic oxygen evolution was evidently suppressed in zel1. The amount of the core protein of PS II CP47 was much lower in all the PS II complexes especially in the LHCII-PS II supercomplexes and CP43-free PS II of zel1 than that of WT. On the other hand, the amount of another core protein of PS II CP43 of zel1 was decreased in the higher supercomplexes, whereas it was increased in the lower ones and PS II monomer. The immunodetection displayed that CP43, CP47, and the oxygen-evolving extrinsic proteins PsbO and PsbP were reduced, but the amount of reaction center protein D1 did not show significant change in zel1. Northern blot analysis showed that the transcriptional level of CP43 was down-regulated but not that of CP47 or D1 in zel1. In addition, the plastoquinone (PQ) QA was in a reduced state in zel1. On the basis of the results, we suggest that CRTISO might function in regulating the transcription of CP43 and the translation of CP47 by affecting the redox state of the PQ to stabilize the extrinsic proteins of oxygen evolution complexes in the rice plant.

  A Kiely , M Xu , W. Z Song , R Huang and B. Shirazi
 

We present a lightweight lossless compression algorithm for realtime sensor networks. Our proposed adaptive linear filtering compression (ALFC) algorithm performs predictive compression using adaptive linear filtering to predict sample values followed by entropy coding of prediction residuals, encoding a variable number of samples into fixed-length packets. Adaptive prediction eliminates the need to determine prediction coefficients a priori and, more importantly, allows compression to dynamically adjust to a changing source. The algorithm requires only integer arithmetic operations and thus is compatible with sensor platforms that do not support floating-point operations. Significant robustness to packets losses is provided by including small but sufficient overhead data to allow each packet to be independently decoded. Real-world evaluations on seismic data from a wireless sensor network testbed show that ALFC provides more effective compression and uses less resources than an alternative recent work of lossless compression, S-LZW. Experiments in a multi-hop sensor network also show that ALFC can significantly improve raw data throughput and energy efficiency. We also implement the algorithm in our real sensor network, and show that our linear prediction based compression algorithm significantly improves data reliability and network efficiency.

  I Eleftherianos , M Xu , H Yadi , R. H ffrench Constant and S. E. Reynolds
  I. Eleftherianos, M. Xu, H. Yadi, R. H. ffrench-Constant, and S. E. Reynolds

Insect hemocytes (blood cells) are a central part of the insect's cellular response to bacterial pathogens, and these specialist cells can both recognize and engulf bacteria. During this process, hemocytes undergo poorly characterized changes in adhesiveness. Previously, a peptide termed plasmatocyte-spreading peptide (PSP), which induces the adhesion and spreading of plasmatocytes on foreign surfaces, has been identified in lepidopteran insects. Here, we investigate the function of this peptide in the moth Manduca sexta using RNA interference (RNAi) to prevent expression of the precursor protein proPSP. We show that infection with the insect-specific bacterial pathogen Photorhabdus luminescens and non-pathogenic Escherichia coli induces proPSP mRNA transcription in the insect fat body but not in hemocytes; subsequently, proPSP protein can be detected in cell-free hemolymph. We used RNAi to silence this upregulation of proPSP and found that the knock-down insects succumbed faster to infection with P. luminescens, but not E. coli. RNAi-treated insects infected with E. coli showed a reduction in the number of circulating hemocytes and higher bacterial...

  I Cervantes Martinez , D Sandhu , M Xu , E Ortiz Perez , K. K Kato , H. T Horner and R. G. Palmer
 

Soybean [Glycine max (L.) Merr.] is self-pollinated. To produce large quantities of hybrid seed, insect-mediated cross-pollination is necessary. An efficient nuclear male-sterile system for hybrid seed production would benefit from molecular and/or phenotypic markers linked to male fertility/sterility loci to facilitate early identification of phenotypes. Nuclear male-sterile, female-fertile ms3 mutant is a single recessive gene and displays high outcrossed seed set with pollinators. Our objective was to map the ms3 locus. A segregating population of 150 F2 plants from Minsoy (PI 27890) x T284H, Ms3ms3 (A00-68), was screened with 231 simple sequence repeat markers. The ms3 locus mapped to molecular linkage group (MLG) D1b (Gm02) and is flanked by markers Satt157 and Satt542, with a distance of 3.7 and 12.3 cM, respectively. Female-partial sterile-1 (Fsp1) and the Midwest Oilseed male-sterile (msMOS) mutants previously were located on MLG D1b. msMOS and Fsp1 are independent genes located very close to each other. All 3 genes are located in close proximity of Satt157. We believe that this is the first report of clustering of fertility-related genes in plants. Characterization of these closely linked genes may help in understanding the evolutionary relationship among them.

  M. R Campioni , M Xu and D. S. McGehee
 

Stress hormones released in the CNS following exposure to unavoidable, aversive stimuli have been shown to alter the physiology of neurons in multiple brain regions including hippocampus, amygdala, prefrontal cortex, and ventral tegmental area. The nucleus accumbens (NAc), a motor-limbic interface linked to motivation and reward, receives inputs from each of these stress-affected brain regions, raising the possibility that its function might also be altered in response to stress. To assess potential stress-induced plasticity in the NAc, we exposed adult mice to daily cold water forced swim for 2 consecutive days and conducted electrophysiological experiments assessing glutamate receptor function in brain slices taken 18–24 h following the second swim. We found that AMPA receptor (AMPAR)/N-methyl-d-aspartate receptor (NMDAR) ratios, a measure of synaptic strength, were increased in the NAc shell but not core medium spiny neurons (MSNs) in stressed animals relative to controls. This effect was blocked by preadministration of glucocorticoid receptor (GR) antagonist RU486, suggesting that the observed changes are dependent on corticosteroid signaling. The role of corticosterone (CORT) in the observed plasticity was confirmed, because exogenous administration of 10 mg/kg CORT also enhanced AMPAR/NMDAR ratios in the NAc shell. The synaptic changes in NAc shell MSNs reflect an enhancement of AMPAR-mediated currents, as we observed increased AMPAR miniature postsynaptic current (mEPSC) amplitude following stress but no change in NMDAR mEPSCs. We hypothesize that altered information processing via plasticity of excitatory inputs might contribute to reward-related behaviors such as stress-induced reinstatement of drug seeking in animals and relapse in humans.

  S Zheng , W Li , M Xu , X Bai , Z Zhou , J Han , J. Y. J Shyy and X. Wang
 

Ischemia induces angiogenesis as a compensatory response. Although ischemia is known to causes synthesis and release of calcitonin gene-related peptide (CGRP), it is not clear whether CGRP regulates angiogenesis under ischemia and how does it function. Thus we investigated the role of CGRP in angiogenesis and the involved mechanisms. We found that CGRP level was increased in the rat hindlimb ischemic tissue. The expression of exogenous CGRP by adenovirus vectors enhanced blood flow recovery and increased capillary density in ischemic hindlimbs. In vitro, CGRP promoted human umbilical vein endothelial cell (HUVEC) tube formation and migration. Further more, CGRP activated AMP-activated protein kinase (AMPK) both in vivo and in vitro, and pharmacological inhibition of CGRP and cAMP attenuated the CGRP-activated AMPK in vitro. CGRP also induced endothelial nitric oxide synthase (eNOS) phosphorylation in HUVECs at Ser1177 and Ser633 in a time-dependent manner, and such effects were abolished by AMPK inhibitor Compound C. As well, Compound C blocked CGRP-enhanced HUVEC tube formation and migration. These findings indicate that CGRP promotes angiogenesis by activating the AMPK-eNOS pathway in endothelial cells.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility