Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by M Matsumoto
Total Records ( 5 ) for M Matsumoto
  Y Takemoto , H Kawata , T Soeda , K Imagawa , S Somekawa , Y Takeda , S Uemura , M Matsumoto , Y Fujimura , J. i Jo , Y Kimura , Y Tabata and Y. Saito
 

Background— In-stent thrombosis is mainly triggered by adenosine diphosphate (ADP)-dependent platelet aggregation after percutanous coronary stent implantation. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) rapidly hydrolyzes ADP to adenosine monophosphate, inhibiting platelet aggregation. We tested the hypothesis that local delivery of human placental E-NTPDase (pE-NTPDase) gene into injured arteries via gene-eluting stent could prevent subacute in-stent thrombosis.

Methods and Results— We generated gene-eluting stents by coating bare metal stents with cationic gelatin hydrogel containing pE-NTPDase cDNA (pE-NTPDase stent), and implanted the stents into rabbit femoral arteries (FA) prone to production of platelet-rich thrombi due to repeated balloon injury at 4-week intervals. After the second injury, E-NTPDase gene expression was severely decreased; however, the implantation of pE-NTPDase stent increased E-NTPDase mRNA levels and NTPDase activity to higher level than normal FA. The FAs with pE-NTPDase stents maintained patency in all rabbits (P<0.01), whereas the stent-implanted FAs without pE-NTPDase gene showed low patency rates (17% to 25%). The occlusive platelet-rich thrombi, excessive neointimal growth, and infiltration of macrophages were inhibited in stent implanted FA with pE-NTPDase gene, but not without pE-NTPDase gene.

Conclusions— Human pE-NTPDase gene transfer via cationic gelatin-coated stents inhibited subacute in-stent thrombosis and suppressed neointimal hyperplasia and inflammation without antiplatelet drugs.

  H Hiura , T Matsui , M Matsumoto , Y Hori , A Isonishi , S Kato , T Iwamoto , T Mori and Y. Fujimura
 

ADAMTS13 is a metalloproteinase that specifically cleaves unusually large von Willbrand factor multimers under high-shear stress. Deficiency of ADAMTS13 activity induces a life-threatening generalized disease, thrombotic thrombocytopenic purpura. We established a simple and efficient method to purify plasma ADAMTS13 (pADAMTS13) from cryosupernatant using an anti-ADAMTS13 monoclonal antibody (A10) that recognizes a conformational epitope within the disintegrin-like domain. Using the purified pADAMTS13, the amino acid residues involved in cleavage by thrombin, plasmin and leucocyte elastase were determined, and the carbohydrate moieties of this enzyme was analysed by lectin blots. Purified pADAMTS13 had a specific activity of 300 U/mg (25,057-fold purification) and the pI was 5.1–5.5. Cleavage sites of the purified pADAMTS13 by three proteases were identified; thrombin cleaved the four peptidyl bonds between Arg257–Ala258, Arg459–Ser460, Arg888–Thr889 and Arg1176–Arg1177, plasmin cleaved the three peptidyl bonds between Arg257–Ala258, Arg888–Thr889 and Arg1176–Arg1177, and elastase cleaved the two peptidyl bonds between Ile380–Ala381 and Thr874–Ser875. Lectin blot analysis indicated the presence of non-reducing terminal 2–6 and 2–3-linked sialic acid residues with penultimate β-galactose residues on the N- and O-linked sugar chains of pADAMTS13, suggesting that pADAMTS13 is cleared from the circulation via the hepatic asialoglycoprotein receptor like other plasma glycoproteins.

  K Yamakoshi , A Takahashi , F Hirota , R Nakayama , N Ishimaru , Y Kubo , D. J Mann , M Ohmura , A Hirao , H Saya , S Arase , Y Hayashi , K Nakao , M Matsumoto , N Ohtani and E. Hara
 

Expression of the p16Ink4a tumor suppressor gene, a sensor of oncogenic stress, is up-regulated by a variety of potentially oncogenic stimuli in cultured primary cells. However, because p16Ink4a expression is also induced by tissue culture stress, physiological mechanisms regulating p16Ink4a expression remain unclear. To eliminate any potential problems arising from tissue culture–imposed stress, we used bioluminescence imaging for noninvasive and real-time analysis of p16Ink4a expression under various physiological conditions in living mice. In this study, we show that oncogenic insults such as ras activation provoke epigenetic derepression of p16Ink4a expression through reduction of DNMT1 (DNA methyl transferase 1) levels as a DNA damage response in vivo. This pathway is accelerated in the absence of p53, indicating that p53 normally holds the p16Ink4a response in check. These results unveil a backup tumor suppressor role for p16Ink4a in the event of p53 inactivation, expanding our understanding of how p16Ink4a expression is regulated in vivo.

  D Iwakiri , L Zhou , M Samanta , M Matsumoto , T Ebihara , T Seya , S Imai , M Fujieda , K Kawa and K. Takada
 

Epstein-Barr virus–encoded small RNA (EBER) is nonpolyadenylated, noncoding RNA that forms stem-loop structure by intermolecular base-pairing, giving rise to double-stranded RNA (dsRNA)–like molecules, and exists abundantly in EBV-infected cells. Here, we report that EBER induces signaling from the Toll-like receptor 3 (TLR3), which is a sensor of viral double-stranded RNA (dsRNA) and induces type I IFN and proinflammatory cytokines. A substantial amount of EBER, which was sufficient to induce signaling from TLR3, was released from EBV-infected cells, and the majority of the released EBER existed as a complex with a cellular EBER-binding protein La, suggesting that EBER was released from the cells by active secretion of La. Sera from patients with infectious mononucleosis (IM), chronic active EBV infection (CAEBV), and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), whose general symptoms are caused by proinflammatory cytokines contained EBER, and addition of RNA purified from the sera into culture medium induced signaling from TLR3 in EBV-transformed lymphocytes and peripheral mononuclear cells. Furthermore, DCs treated with EBER showed mature phenotype and antigen presentation capacity. These findings suggest that EBER, which is released from EBV-infected cells, is responsible for immune activation by EBV, inducing type I IFN and proinflammatory cytokines. EBER-induced activation of innate immunity would account for immunopathologic diseases caused by active EBV infection.

  T Ebihara , M Azuma , H Oshiumi , J Kasamatsu , K Iwabuchi , K Matsumoto , H Saito , T Taniguchi , M Matsumoto and T. Seya
 

In myeloid dendritic cells (mDCs), TLR3 is expressed in the endosomal membrane and interacts with the adaptor toll/interleukin 1 receptor homology domain–containing adaptor molecule 1 (TICAM-1; TRIF). TICAM-1 signals culminate in interferon (IFN) regulatory factor (IRF) 3 activation. Co-culture of mDC pretreated with the TLR3 ligand polyI:C and natural killer (NK) cells resulted in NK cell activation. This activation was triggered by cell-to-cell contact but not cytokines. Using expression profiling and gain/loss-of-function analyses of mDC genes, we tried to identify a TICAM-1–inducing membrane protein that participates in mDC-mediated NK activation. Of the nine candidates screened, one contained a tetraspanin-like sequence and satisfied the screening criteria. The protein, referred to as IRF-3–dependent NK-activating molecule (INAM), functioned in both the mDC and NK cell to facilitate NK activation. In the mDC, TICAM-1, IFN promoter stimulator 1, and IRF-3, but not IRF-7, were required for mDC-mediated NK activation. INAM was minimally expressed on NK cells, was up-regulated in response to polyI:C, and contributed to mDC–NK reciprocal activation via its cytoplasmic tail, which was crucial for the activation signal in NK cells. Adoptive transfer of INAM-expressing mDCs into mice implanted with NK-sensitive tumors caused NK-mediated tumor regression. We identify a new pathway for mDC–NK contact-mediated NK activation that is governed by a TLR signal-derived membrane molecule.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility