Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by M Hattori
Total Records ( 4 ) for M Hattori
  Y Yamanishi , M Hattori , M Kotera , S Goto and M. Kanehisa
 

Motivation: The IUBMB's Enzyme Nomenclature system, commonly known as the Enzyme Commission (EC) numbers, plays key roles in classifying enzymatic reactions and in linking the enzyme genes or proteins to reactions in metabolic pathways. There are numerous reactions known to be present in various pathways but without any official EC numbers, most of which have no hope to be given ones because of the lack of the published articles on enzyme assays.

Results: In this article we propose a new method to predict the potential EC numbers to given reactant pairs (substrates and products) or uncharacterized reactions, and a web-server named E-zyme as an application. This technology is based on our original biochemical transformation pattern which we call an ‘RDM pattern’, and consists of three steps: (i) graph alignment of a query reactant pair (substrates and products) for computing the query RDM pattern, (ii) multi-layered partial template matching by comparing the query RDM pattern with template patterns related with known EC numbers and (iii) weighted major voting scheme for selecting appropriate EC numbers. As the result, cross-validation experiments show that the proposed method achieves both high coverage and high prediction accuracy at a practical level, and consistently outperforms the previous method.

Availability: The E-zyme system is available at http://www.genome.jp/tools/e-zyme/

Contact: kanehisa@kuicr.kyoto-u.ac.jp

  D. R Brims , J Qian , I Jarchum , L Mikesh , E Palmieri , U. A Ramagopal , V. N Malashkevich , R. J Chaparro , T Lund , M Hattori , J Shabanowitz , D. F Hunt , S. G Nathenson , S. C Almo and T. P. DiLorenzo
 

Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing pancreatic β cells. In both humans and the non-obese diabetic (NOD) mouse model of T1D, class II MHC alleles are the primary determinant of disease susceptibility. However, class I MHC genes also influence risk. These findings are consistent with the requirement for both CD4+ and CD8+ T cells in the pathogenesis of T1D. Although a large body of work has permitted the identification of multiple mechanisms to explain the diabetes-protective effect of particular class II MHC alleles, studies examining the protective influence of class I alleles are lacking. Here, we explored this question by performing biochemical and structural analyses of the murine class I MHC molecule H-2Kwm7, which exerts a diabetes-protective effect in NOD mice. We have found that H-2Kwm7 molecules are predominantly occupied by the single self-peptide VNDIFERI, derived from the ubiquitous protein histone H2B. This unexpected finding suggests that the inability of H-2Kwm7 to support T1D development could be due, at least in part, to the failure of peptides from critical β-cell antigens to adequately compete for binding and be presented to T cells. Predominant presentation of a single peptide would also be expected to influence T-cell selection, potentially leading to a reduced ability to select a diabetogenic CD8+ T-cell repertoire. The report that one of the predominant peptides bound by T1D-protective HLA-A*31 is histone derived suggests the potential translation of our findings to human diabetes-protective class I MHC molecules.

  Y Nakajima , M Moriyama , M Hattori , N Minato and S. Nakanishi
 

mGluR6 expression is a characteristic property of retinal ON bipolar cells. mGluR6 is also the causal gene for a form of congenital night blindness. To elucidate physiological and pathological functions of ON bipolar cells and mGluR6, we thought it important to identify genes specifically expressed in them. We thus made transgenic mouse lines expressing humanized Renilla reniformis green fluorescent protein (hrGFP), under the control of the mGluR6 promoter. From their retina, we isolated hrGFP-positive cells by cell sorting, and analysed the gene-expression profile of these cells by using DNA microarray. Further analysis revealed that about half of the initially selected ON bipolar cell genes were expressed in the expected retinal layer. We confirmed previously ambiguous retinal localization of regulator of G-protein signalling 11 (RGS11) and transient receptor potential cation channel, subfamily M, member 1 (TRPM1). In addition, we showed the expression of calcium channel, voltage-dependent, alpha2/delta subunit 3 (Cacna2d3) in ON bipolar cells for the first time. Although we could not completely exclude the possibility that a small population of hrGFP-positive cells might not be ON bipolar cells, these mice as well as our strategy would be highly valuable for the further analysis of ON bipolar cells.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility