Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by M Brown
Total Records ( 5 ) for M Brown
  J Boros , I. J Donaldson , A O'Donnell , Z. A Odrowaz , L Zeef , M Lupien , C. A Meyer , X. S Liu , M Brown and A. D. Sharrocks

Transcription factors play an important role in orchestrating the activation of specific networks of genes through targeting their proximal promoter and distal enhancer regions. However, it is unclear how the specificity of downstream responses is maintained by individual members of transcription-factor families and, in most cases, what their target repertoire is. We have used ChIP-chip analysis to identify the target genes of the ETS-domain transcription factor ELK1. Two distinct modes of ELK1 target gene selection are identified; the first involves redundant promoter binding with other ETS-domain family members; the second occurs through combinatorial binding with a second transcription factor SRF, which specifies a unique group of target genes. One of the most prominent groups of genes forming the ELK1 target network includes classes involved in core gene expression control, namely, components of the basal transcriptional machinery, the spliceosome and the ribosome. Amongst the set of genes encoding the basal transcription machinery components, are a functionally linked subset of GTFs and TAFs. Our study, therefore, reveals an unsuspected level of coordinate regulation of components of the core gene expression control machinery and also identifies two different modes of promoter targeting through binding with a second transcription factor or redundant binding with other ETS-domain family members.

  E Org , S Eyheramendy , P Juhanson , C Gieger , P Lichtner , N Klopp , G Veldre , A Doring , M Viigimaa , S Sober , K Tomberg , G Eckstein , Kelgo KORA , T Rebane , S Shaw Hawkins , P Howard , A Onipinla , R. J Dobson , S. J Newhouse , M Brown , A Dominiczak , J Connell , N Samani , M Farrall , Caulfield BRIGHT , P. B Munroe , T Illig , H. E Wichmann , T Meitinger and M. Laan

Hypertension is a complex disease that affects a large proportion of adult population. Although approximately half of the inter-individual variance in blood pressure (BP) level is heritable, identification of genes responsible for its regulation has remained challenging. Genome-wide association study (GWAS) is a novel approach to search for genetic variants contributing to complex diseases. We conducted GWAS for three BP traits [systolic and diastolic blood pressure (SBP and DBP); hypertension (HYP)] in the Kooperative Gesundheitsforschung in der Region Augsburg (KORA) S3 cohort (n = 1644) recruited from general population in Southern Germany. GWAS with 395 912 single nucleotide polymorphisms (SNPs) identified an association between BP traits and a common variant rs11646213 (T/A) upstream of the CDH13 gene at 16q23.3. The initial associations with HYP and DBP were confirmed in two other European population-based cohorts: KORA S4 (Germans) and HYPEST (Estonians). The associations between rs11646213 and three BP traits were replicated in combined analyses (dominant model: DBP, P = 5.55 x 10–5, effect –1.40 mmHg; SBP, P = 0.007, effect –1.56 mmHg; HYP, P = 5.30 x 10–8, OR = 0.67). Carriers of the minor allele A had a decreased risk of hypertension. A non-significant trend for association was also detected with severe family based hypertension in the BRIGHT sample (British). The novel susceptibility locus, CDH13, encodes for an adhesion glycoprotein T-cadherin, a regulator of vascular wall remodeling and angiogenesis. Its function is compatible with the BP biology and may improve the understanding of the pathogenesis of hypertension.

  D. E Frigo , A. B Sherk , B. M Wittmann , J. D Norris , Q Wang , J. D Joseph , A. P Toner , M Brown and D. P. McDonnell

Advanced prostate cancers preferentially metastasize to bone, suggesting that this tissue produces factors that provide a suitable microenvironment for prostate cancer cells. Recently, it has become clear that even in antiandrogen-resistant cancers, the androgen receptor (AR)-signaling axis is required for prostate cancer progression. Therefore, we hypothesized that AR may be involved in the regulation of pathways that are responsible for the homing of prostate cancer cells to select microenvironments. In support of this hypothesis, we have determined that chemokine (C-X-C motif) receptor 4 (CXCR4), the receptor for the chemokine CXCL12, is up-regulated in prostate cancer cells in response to androgens. Given that the levels of CXCL12 are elevated at sites of known prostate cancer metastases such as bone, these results suggest that androgens may influence prostate cancer metastasis. Specifically, we demonstrate that androgens increase the levels of both CXCR4 mRNA and functional protein in LNCaP prostate cancer cells. Importantly, androgens enhanced the migration of LNCaP cells toward a CXCL12 gradient, an effect that could be blocked by the specific CXCR4 antagonist AMD3100. Interestingly, CXCR4 is not directly regulated by androgens but rather is positively up-regulated by Krüppel-like factor 5 (KLF5), a transcription factor that we have shown to be an early, direct target of AR. Further, KLF5 is both required and sufficient for androgen-mediated CXCR4 expression and migration toward CXCL12. Taken together, these findings demonstrate that AR can utilize the CXCL12/CXCR4 axis through induction of KLF5 expression to promote prostate cancer progression and highlight the potential utility of CXCR4 antagonists as prostate cancer therapeutics.

  A Hallil , M Brown , Yu Akatov , V Arkhangelsky , I Chernykh , V Mitrikas , V Petrov , V Shurshakov , L Tomi , I Kartsev and V. Lyagushin

Radiation measurements of surface and deep organ doses were performed aboard the International Space Station, for the period of January 2006 to April 2007, using a MOSFET dosimetry system combined with the Matroshka-R spherical phantom. The averaged internal and surface dose rates are found to be 0.19 and 0.29 mGy d–1, respectively. The levels of radiation dose to blood-forming organs (BFO) and to surface organs are compared with recommended safe limits. The maximum measured BFO dose has an average dose rate of 0.23 mGy d–1 (84 mGy y–1), corresponding to 44 % of the recommended annual limit of 0.5 Sv, for a space radiation quality factor of 2.6. The annual surface dose is found to be higher at 126 mGy, corresponding to 16 % of the eye dose limit and to 11 % of the skin dose limit. Doses calculated using the Spenvis software showed deviations of up to 37 % from measurements.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility