Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Lawrence L. Rudel
Total Records ( 5 ) for Lawrence L. Rudel
  Seth J. Baum , Penny M. Kris-Etherton , Walter C. Willett , Alice H. Lichtenstein , Lawrence L. Rudel , Kevin C. Maki , Jay Whelan , Christopher E. Ramsden and Robert C. Block
  Research dating back to the 1950s reported an association between the consumption of saturated fatty acids (SFAs) and risk of coronary heart disease. Recent epidemiological evidence, however, challenges these findings. It is well accepted that the consumption of SFAs increases low-density lipoprotein cholesterol (LDL-C), whereas carbohydrates, monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) do not. High-density lipoprotein (HDL)-C increases with SFA intake. Among individuals who are insulin resistant, a low-fat, high-carbohydrate diet typically has an adverse effect on lipid profiles (in addition to decreasing HDL-C, it also increases triglyceride and LDL particle concentrations). Consequently, a moderate fat diet in which unsaturated fatty acids replace SFAs and carbohydrates are not augmented is advised to lower LDL-C; compared with a low-fat diet, a moderate-fat diet will lower triglycerides and increase HDL-C. Now, there is some new evidence that is questioning the health benefits of even MUFAs and PUFAs. In addition, in a few recent studies investigators have also failed to demonstrate expected cardiovascular benefits of marine-derived omega-3 fatty acids. To clarify the clinical pros and cons of dietary fats, the National Lipid Association held a fatty acid symposium at the 2011 National Lipid Association Scientific Sessions. During these sessions, the science regarding the effects of different fatty acid classes on coronary heart disease risk was reviewed.
  Akash Das , Matthew A. Davis , Hiroshi Tomoda , Satoshi Omura and Lawrence L. Rudel
  Targeted deletion of acyl-CoA:cholesterol acyltransferase 2 (ACAT2) (A2), especially in the liver, protects hyperlipidemic mice from diet-induced hypercholesterolemia and atherosclerosis, whereas the deletion of ACAT1 (A1) is not as effective, suggesting ACAT2 may be the more appropriate target for treatment of atherosclerosis. Among the numerous ACAT inhibitors known, pyripyropene A (PPPA) is the only compound that has high selectivity (>2000-fold) for inhibition of ACAT2 compared with ACAT1. In the present study we sought to determine the PPPA interaction site of ACAT2. To achieve this goal we made several chimeric proteins where parts of ACAT2 were replaced by the analogous region of ACAT1. Differences in the amino acid sequence and the membrane topology were utilized to design the chimeras. Among chimeras, A2:1–428/A1:444–550 had 50% reduced PPPA selectivity, whereas C-terminal-truncated ACAT2 mutant A2:1–504 (C-terminal last 22 amino acids were deleted) remained selectively inhibited, indicating the PPPA-sensitive site is located within a region between amino acids 440 and 504. Three additional chimeras within this region helped narrow down the PPPA-sensitive site to a region containing amino acids 480–504, representing the fifth putative transmembrane domain of ACAT2. Subsequently, for this region we made single amino acid mutants where each amino acid in ACAT2 was individually changed to its ACAT1 counterpart. Mutation of Q492L, V493L, S494A resulted in only 30, 50, and 70% inhibition of the activity by PPPA, respectively (as opposed to greater than 95% with the wild type enzyme), suggesting these three residues are responsible for the selective inhibition by PPPA of ACAT2. Additionally, we found that PPPA non-covalently interacts with ACAT2 apparently without altering the oligomeric structure of the protein. The present study provides the first evidence for a unique motif in ACAT2 that can be utilized for making an ACAT2-specific drug.
  J. Mark Brown , Thomas A. Bell , Heather M. Alger , Janet K. Sawyer , Thomas L. Smith , Kathryn Kelley , Ramesh Shah , Martha D. Wilson , Matthew A. Davis , Richard G. Lee , Mark J. Graham , Rosanne M. Crooke and Lawrence L. Rudel
  Deletion of acyl-CoA:cholesterol O-acyltransferase 2 (ACAT2) in mice results in resistance to diet-induced hypercholesterolemia and protection against atherosclerosis. Recently, our group has shown that liver-specific inhibition of ACAT2 via antisense oligonucleotide (ASO)-mediated targeting likewise limits atherosclerosis. However, whether this atheroprotective effect was mediated by: 1) prevention of packaging of cholesterol into apoB-containing lipoproteins, 2) augmentation of nascent HDL cholesterol secretion, or 3) increased hepatobiliary sterol secretion was not examined. Therefore, the purpose of these studies was to determine whether hepatic ACAT2 is rate-limiting in all three of these important routes of cholesterol homeostasis. Liver-specific depletion of ACAT2 resulted in reduced packaging of cholesterol into apoB-containing lipoproteins (very low density lipoprotein, intermediate density lipoprotein, and low density lipoprotein), whereas high density lipoprotein cholesterol levels remained unchanged. In the liver of ACAT2 ASO-treated mice, cholesterol ester accumulation was dramatically reduced, yet there was no reciprocal accumulation of unesterified cholesterol. Paradoxically, ASO-mediated depletion of hepatic ACAT2 promoted fecal neutral sterol excretion without altering biliary sterol secretion. Interestingly, during isolated liver perfusion, ACAT2 ASO-treated livers had augmented secretion rates of unesterified cholesterol and phospholipid. Furthermore, we demonstrate that liver-derived cholesterol from ACAT2 ASO-treated mice is preferentially delivered to the proximal small intestine as a precursor to fecal excretion. Collectively, these studies provide the first insight into the hepatic itinerary of cholesterol when cholesterol esterification is inhibited only in the liver, and provide evidence for a novel non-biliary route of fecal sterol loss.
  Iris J. Edwards , Haiguo Sun , Yunping Hu , Isabelle M. Berquin , Joseph T. O`Flaherty , J. Mark Cline , Lawrence L. Rudel and Yong Q. Chen
  Syndecan 1 is the major proteoglycan produced by epithelial cells. It is strategically localized at the plasma membrane to participate in growth factor signaling and cell-cell and cell-matrix interactions. Its expression may modulate the properties of epithelial lineage tumor cells in which it is generally down-regulated compared with nontumor progenitors. The present study examined the regulation of syndecan 1 in prostate epithelial cells by n-3 polyunsaturated fatty acids. In prostate tissue of mice, syndecan 1 immunostaining was demonstrated in epithelial cells throughout each gland. In animals fed an n-3 polyunsaturated fatty acid-enriched diet, syndecan 1 mRNA was increased in all prostate glands. In the human prostate cancer cell line, PC-3, delivery of exogenous n-3 (but not n-6) fatty acids resulted in up-regulation of syndecan 1 expression. This effect was mimicked by a peroxisome proliferator-activated receptor (PPAR) γ agonist, troglitazone, and inhibited in the presence of a PPARγ antagonist and in cells transfected with dominant negative PPARγ cDNA. Using a luciferase gene driven either by a PPAR response element or by a DR-1 site present in the syndecan 1 promoter, reporter activation was increased by n-3 low density lipoprotein, docosahexaenoic acid, and troglitazone, whereas activity of a luciferase gene placed downstream of a mutant DR-1 site was unresponsive. These findings indicate that syndecan 1 is up-regulated by n-3 fatty acids by a transcriptional pathway involving PPARγ. This mechanism may contribute to the chemopreventive properties of n-3 fatty acids in prostate cancer.
  Jahangir Iqbal , Lawrence L. Rudel and M. Mahmood Hussain
  Cholesteryl ester synthesis by the acyl-CoA:cholesterol acyltransferase enzymes ACAT1 and ACAT2 is, in part, a cellular homeostatic mechanism to avoid toxicity associated with high free cholesterol levels. In hepatocytes and enterocytes, cholesteryl esters are secreted as part of apoB lipoproteins, the assembly of which is critically dependent on microsomal triglyceride transfer protein (MTP). Conditional genetic ablation of MTP reduces cholesteryl esters and enhances free cholesterol in the liver and intestine without diminishing ACAT1 and ACAT2 mRNA levels. As expected, increases in hepatic free cholesterol are associated with decreases in 3-hydroxy-3-methylglutaryl-CoA reductase and increases in ATP-binding cassette transporter 1 mRNA levels. Chemical inhibition of MTP also decreases esterification of cholesterol in Caco-2 and HepG2 cells. Conversely, coexpression of MTP and apoB in AC29 cells stably transfected with ACAT1 and ACAT2 increases cholesteryl ester synthesis. Liver and enterocyte microsomes from MTP-deficient animals synthesize lesser amounts of cholesteryl esters in vitro, but addition of purified MTP and low density lipoprotein corrects this deficiency. Enrichment of microsomes with cholesteryl esters also inhibits cholesterol ester synthesis. Thus, MTP enhances cellular cholesterol esterification by removing cholesteryl esters from their site of synthesis and depositing them into nascent apoB lipoproteins. Therefore, MTP plays a novel role in regulating cholesteryl ester biosynthesis in cells that produce lipoproteins. We speculate that non-lipoprotein-producing cells may use different mechanisms to alleviate product inhibition and modulate cholesteryl ester biosynthesis.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility