Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by L. A Snook
Total Records ( 2 ) for L. A Snook
  J. L Talanian , G. P Holloway , L. A Snook , G. J. F Heigenhauser , A Bonen and L. L. Spriet

Fatty acid oxidation is highly regulated in skeletal muscle and involves several sites of regulation, including the transport of fatty acids across both the plasma and mitochondrial membranes. Transport across these membranes is recognized to be primarily protein mediated, limited by the abundance of fatty acid transport proteins on the respective membranes. In recent years, evidence has shown that fatty acid transport proteins move in response to acute and chronic perturbations; however, in human skeletal muscle the localization of fatty acid transport proteins in response to training has not been examined. Therefore, we determined whether high-intensity interval training (HIIT) increased total skeletal muscle, sarcolemmal, and mitochondrial membrane fatty acid transport protein contents. Ten untrained females (22 ± 1 yr, 65 ± 2 kg; Vo2peak: 2.8 ± 0.1 l/min) completed 6 wk of HIIT, and biopsies from the vastus lateralis muscle were taken before training, and following 2 and 6 wk of HIIT. Training significantly increased maximal oxygen uptake at 2 and 6 wk (3.1 ± 0.1, 3.3 ± 0.1 l/min). Training for 6 wk increased FAT/CD36 at the whole muscle (10%) and mitochondrial levels (51%) without alterations in sarcolemmal content. Whole muscle plasma membrane fatty acid binding protein (FABPpm) also increased (48%) after 6 wk of training, but in contrast to FAT/CD36, sarcolemmal FABPpm increased (23%), whereas mitochondrial FABPpm was unaltered. The changes on sarcolemmal and mitochondrial membranes occurred rapidly, since differences (≤2 wk) were not observed between 2 and 6 wk. This is the first study to demonstrate that exercise training increases fatty acid transport protein content in whole muscle (FAT/CD36 and FABPpm) and sarcolemmal (FABPpm) and mitochondrial (FAT/CD36) membranes in human skeletal muscle of females. These results suggest that increases in skeletal muscle fatty acid oxidation following training are related in part to changes in fatty acid transport protein content and localization.

  J. G Nickerson , H Alkhateeb , C. R Benton , J Lally , J Nickerson , X. X Han , M. H Wilson , S. S Jain , L. A Snook , J. F. C Glatz , A Chabowski , J. J. F. P Luiken and A. Bonen

In selected mammalian tissues, long chain fatty acid transporters (FABPpm, FAT/CD36, FATP1, and FATP4) are co-expressed. There is controversy as to whether they all function as membrane-bound transporters and whether they channel fatty acids to oxidation and/or esterification. Among skeletal muscles, the protein expression of FABPpm, FAT/CD36, and FATP4, but not FATP1, correlated highly with the capacities for oxidative metabolism (r ≥ 0.94), fatty acid oxidation (r ≥ 0.88), and triacylglycerol esterification (r ≥ 0.87). We overexpressed independently FABPpm, FAT/CD36, FATP1, and FATP4, within a normal physiologic range, in rat skeletal muscle, to determine the effects on fatty acid transport and metabolism. Independent overexpression of each fatty acid transporter occurred without altering either the expression or plasmalemmal content of other fatty acid transporters. All transporters increased fatty acid transport, but FAT/CD36 and FATP4 were 2.3- and 1.7-fold more effective than FABPpm and FATP1, respectively. Fatty acid transporters failed to alter the rates of fatty acid esterification into triacylglycerols. In contrast, all transporters increased the rates of long chain fatty acid oxidation, but the effects of FABPpm and FAT/CD36 were 3-fold greater than for FATP1 and FATP4. Thus, fatty acid transporters exhibit different capacities for fatty acid transport and metabolism. In vivo, FAT/CD36 and FATP4 are the most effective fatty acid transporters, whereas FABPpm and FAT/CD36 are key for stimulating fatty acid oxidation.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility