Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by L Tao
Total Records ( 4 ) for L Tao
  Y Wang , L Tao , Y Yuan , W. B Lau , R Li , B. L Lopez , T. A Christopher , R Tian and X. L. Ma
 

Adiponectin (APN) exerts its metabolic regulation largely through AMP-dependent protein kinase (AMPK). However, the role of AMPK in APN's antiapoptotic effect in ischemic-reperfused (I/R) adult cardiomyocytes remains incompletely understood. The present study was designed to determine the involvement of AMPK in the antiapoptotic signaling of APN. Cardiomyocytes from adult male mice overexpressing a dominant-negative 2-subunit of AMPK (AMPK-DN) or wild-type (WT) littermates were subjected to simulated I/R (SI/R) and pretreated with 2 µg/ml globular domain of APN (gAPN) or vehicle. SI/R-induced cardiomyocyte apoptosis was modestly increased in AMPK-DN cardiomyocytes (P < 0.05). Treatment with gAPN significantly reduced SI/R-induced apoptosis in WT cardiomyocytes as well as in AMPK-DN cardiomyocytes, indicating that the antiapoptotic effect of gAPN is partially AMPK independent. Furthermore, gAPN-induced endothelial nitric oxide synthase (eNOS) phosphorylation was significantly reduced in AMPK-DN cardiomyocytes, suggesting that the APN-eNOS signaling axis is impaired in AMPK-DN cardiomyocytes. Additional experiments demonstrated that treatment of AMPK-DN cardiomyocytes with gAPN reduced SI/R-induced NADPH oxidase overexpression, decreased superoxide generation, and blocked peroxynitrite formation to the same extent as that observed in WT cardiomyocytes. Collectively, our present study demonstrated that although the metabolic and eNOS activation effect of APN is largely mediated by AMPK, the superoxide-suppressing effect of APN is not mediated by AMPK, and this AMPK-independent antioxidant property of APN increased nitric oxide bioavailability and exerted significant antiapoptotic effect.

  Y Wang , W. B Lau , E Gao , L Tao , Y Yuan , R Li , X Wang , W. J Koch and X. L. Ma
 

Adiponectin (APN) has traditionally been viewed as an adipocyte-specific endocrine molecule with cardioprotective effects. Recent studies suggest that APN is also expressed in cardiomyocytes. However, biological significances of this locally produced APN remain completely unknown. The aim of this study was to investigate the pathological and pharmacological significance of cardiac-derived APN in cardiomyocyte pathology. Adult cardiomyocytes from wild-type littermates (WT) or gene-deficient mice were pretreated with vehicle (V) or rosiglitazone (RSG) for 6 h followed by simulated ischemia-reperfusion (SI/R, 3 h/12 h). Compared with WT cardiomyocytes, myocytes from APN knockout (APN-KO) mice sustained greater SI/R injury, evidenced by greater oxidative/nitrative stress, caspase-3 activity, and lactate dehydrogenase (LDH) release (P < 0.05). Myocytes from adiponectin receptor 1 knockdown (AdipoR1-KD) or AdipoR1-KD/AdipoR2-KO mice had slightly increased SI/R injury, but the difference was not statistically significant. RSG significantly (P < 0.01) increased APN mRNA and protein expression, upregulated AdipoR1/AdipoR2 expression, reduced SI/R-induced apoptosis, and decreased LDH release in WT cardiomyocytes. However, the anti-oxidative/anti-nitrative and cell protective effects of RSG were completely lost in APN-KO cardiomyocytes (P > 0.05 vs. vehicle group), although a comparable degree of AdipoR1/AdipoR2 upregulation was observed. The upregulatory effect of RSG on APN mRNA and protein expression was significantly potentiated in AdipoR1-KD/AdipoR2-KO cardiomyocytes. However, the cellular protective effects of RSG were significantly blunted, although not completely lost, in these cells. These results demonstrated that cardiomyocyte APN is biologically active in protecting cells against SI/R injury. Moreover, this locally produced APN achieves its protective effect primarily through paracrine/autocrine activation of APN receptors.

  A. K Lim , L Tao and T. Kai
 

Nuage, a well-conserved perinuclear organelle found in germline cells, is thought to mediate retroelement repression in Drosophila melanogaster by regulating the production of Piwi-interacting RNAs (piRNAs). In this study, we present evidence that the nuage–piRNA pathway components can be found in cytoplasmic foci that also contain retroelement transcripts, antisense piRNAs, and proteins involved in messenger RNA (mRNA) degradation. These mRNA degradation proteins, decapping protein 1/2 (DCP1/2), Me31B (maternal expression at 31B), and pacman (PCM), are normally thought of as components of processing bodies. In spindle-E (spn-E) and aubergine (aub) mutants that lack piRNA production, piRNA pathway proteins no longer overlap the mRNA degradation proteins. Concomitantly, spn-E and aub mutant ovaries show an accumulation of full-length retroelement transcripts and prolonged stabilization of HeT-A mRNA, supporting the role of piRNAs in mediating posttranscriptional retroelement silencing. HeT-A mRNA is derepressed in mRNA degradation mutants twin, dcp1, and ski3, indicating that these enzymes also aid in removing full-length transcripts and/or decay intermediates.

  G Civelekoglu Scholey , L Tao , I Brust Mascher , R Wollman and J. M. Scholey
 

The lamin-B nuclear envelope stabilizes spindle microtubules by keeping the competitive motility of opposing-force kinesins in check.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility