Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by L Shen
Total Records ( 8 ) for L Shen
  T Zhang , X Xu , L Shen , Y Feng , Z Yang , Y Shen , J Wang , W Jin and X. Wang

Overexpression of foreign proteins in Escherichia coli often leads to the formation of inclusion bodies (IBs), which becomes the major bottleneck in the preparation of recombinant proteins and their applications. In the present study, 36 proteins from IBs were refolded using a simple refolding method. Refolding yields of these proteins were defined as the percentage of soluble proteins following dilution refolding in the amount of denatured proteins in the samples before diluting into refolding buffer. Furthermore, a mathematical model was deduced to evaluate the role of biochemical properties in the protein refolding. Our results indicated that under the experimental conditions, isoelectric point of proteins might be mostly contributing to the high efficacy of protein refolding since the increment of one unit resulted in a decrease of 14.83% in the refolding yield. Other important mediators were components of protein secondary structure and the molecular weight (R2 = 0.98, P = 0.000, F-test). Six proteins with low efficiency in the protein refolding possessed relatively low isoelectric points. Furthermore, refolding yields of six additional proteins from IBs were predicted and further validated by refolding the proteins under the same conditions. Therefore, the model of protein refolding developed here could be used to predict the refolding yields of proteins from IBs through a simple method. Our study will be suggestive to optimize the methods for protein refolding from IBs according to their intrinsic properties.

  J. L Wang , X Yang , K Xia , Z. M Hu , L Weng , X Jin , H Jiang , P Zhang , L Shen , J Feng Guo , N li , Y. R Li , L. F Lei , J Zhou , J Du , Y. F Zhou , Q Pan , J Wang , R. Q Li and B. S. Tang

Autosomal-dominant spinocerebellar ataxias constitute a large, heterogeneous group of progressive neurodegenerative diseases with multiple types. To date, classical genetic studies have revealed 31 distinct genetic forms of spinocerebellar ataxias and identified 19 causative genes. Traditional positional cloning strategies, however, have limitations for finding causative genes of rare Mendelian disorders. Here, we used a combined strategy of exome sequencing and linkage analysis to identify a novel spinocerebellar ataxia causative gene, TGM6. We sequenced the whole exome of four patients in a Chinese four-generation spinocerebellar ataxia family and identified a missense mutation, c.1550T–G transition (L517W), in exon 10 of TGM6. This change is at a highly conserved position, is predicted to have a functional impact, and completely cosegregated with the phenotype. The exome results were validated using linkage analysis. The mutation we identified using exome sequencing was located in the same region (20p13–12.2) as that identified by linkage analysis, which cross-validated TGM6 as the causative spinocerebellar ataxia gene in this family. We also showed that the causative gene could be mapped by a combined method of linkage analysis and sequencing of one sample from the family. We further confirmed our finding by identifying another missense mutation c.980A–G transition (D327G) in exon seven of TGM6 in an additional spinocerebellar ataxia family, which also cosegregated with the phenotype. Both mutations were absent in 500 normal unaffected individuals of matched geographical ancestry. The finding of TGM6 as a novel causative gene of spinocerebellar ataxia illustrates whole-exome sequencing of affected individuals from one family as an effective and cost efficient method for mapping genes of rare Mendelian disorders and the use of linkage analysis and exome sequencing for further improving efficiency.

  K Konishi , L Shen , J Jelinek , Y Watanabe , S Ahmed , K Kaneko , M Kogo , T Takano , M Imawari , S. R Hamilton and J. P. J. Issa

Epigenetic changes have been proposed as mediators of the field defect in colorectal carcinogenesis, which has implications for risk assessment and cancer prevention. As a test of this hypothesis, we evaluated the methylation status of eight genes (MINT1, 2, 31, MLH1, p16, p14, MGMT, and ESR1), as well as BRAF and KRAS mutations, in 57 multiple colorectal neoplasias (M-CRN) and compared these to 69 solitary colorectal cancers (S-CRC). There were no significant differences in methylation between M-CRNs and S-CRCs except for p14 and MGMT that was significantly higher in M-CRNs than S-CRCs (16.1% versus 9.3%; 26.5% versus 17.3%, respectively; P < 0.05). We found significant (P < 0.05) correlations for MINT1 (r = 0.8), p16 (r = 0.8), MLH1 (r = 0.9), and MGMT (r = 0.6) methylation between tumors pairs of the same site (proximal/proximal and distal/distal). KRAS showed no concordance in mutations. BRAF mutation showed concordance in proximal site pairs but was discordant in different site pairs. Histologically, eight of 10 paired cancers with similar locations were concordant for a cribriform glandular configuration. We conclude that synchronous colorectal tumors of the same site are highly concordant for methylation of multiple genes, BRAF mutations, and a cribriform glandular configuration, all consistent with a patient-specific predisposition to particular subtypes of colorectal cancers. Screening for and secondary prevention of colon cancer should take this fact into account.

  H Suzuki , S Igarashi , M Nojima , R Maruyama , E Yamamoto , M Kai , H Akashi , Y Watanabe , H Yamamoto , Y Sasaki , F Itoh , K Imai , T Sugai , L Shen , J. P. J Issa , Y Shinomura , T Tokino and M. Toyota

A subset of colorectal cancers (CRCs) show simultaneous methylation of multiple genes; these tumors have the CpG island methylator phenotype (CIMP). CRCs with CIMP show a specific pattern of genetic alterations, including a high frequency of BRAF mutations and a low frequency of p53 mutations. We therefore hypothesized that genes inactivated by DNA methylation are involved in the BRAF- and p53-signaling pathways. Among those, we examined the epigenetic inactivation of insulin-like growth factor-binding protein 7 (IGFBP7) expression in CRCs. We found that in CRC cell lines, the silencing of IGFBP7 expression was correlated with high levels of DNA methylation and low levels of histone H3K4 methylation. Luciferase and chromatin immunoprecipitation assays in unmethylated cells revealed that p53 induces expression of IGFBP7 upon binding to a p53 response element within intron 1 of the gene. Treating methylated CRC cell lines with 5-aza-2'-deoxycytidine restored p53-induced IGFBP7 expression. Levels of IGFBP7 methylation were also significantly higher in primary CRC specimens than in normal colonic tissue (P < 0.001). Methylation of IGFBP7 was correlated with BRAF mutations, an absence of p53 mutations and the presence of CIMP. Thus, epigenetic inactivation of IGFBP7 appears to play a key role in tumorigenesis of CRCs with CIMP by enabling escape from p53-induced senescence.

  S Maegawa , G Hinkal , H. S Kim , L Shen , L Zhang , J Zhang , N Zhang , S Liang , L. A Donehower and J. P. J. Issa

Aberrant methylation of promoter CpG islands in cancer is associated with silencing of tumor-suppressor genes, and age-dependent hypermethylation in normal appearing mucosa may be a risk factor for human colon cancer. It is not known whether this age-related DNA methylation phenomenon is specific to human tissues. We performed comprehensive DNA methylation profiling of promoter regions in aging mouse intestine using methylated CpG island amplification in combination with microarray analysis. By comparing C57BL/6 mice at 3-mo-old versus 35-mo-old for 3627 detectable autosomal genes, we found 774 (21%) that showed increased methylation and 466 (13%) that showed decreased methylation. We used pyrosequencing to quantitatively validate the microarray data and confirmed linear age-related methylation changes for all 12 genomic regions examined. We then examined 11 changed genomic loci for age-related methylation in other tissues. Of these, three of 11 showed similar changes in lung, seven of 11 changed in liver, and six of 11 changed in spleen, though to a lower degree than the changes seen in colon. There was partial conservation between age-related hypermethylation in human and mouse intestines, and Polycomb targets in embryonic stem cells were enriched among the hypermethylated genes. Our findings demonstrate a surprisingly high rate of hyper- and hypomethylation as a function of age in normal mouse small intestine tissues and a strong tissue-specificity to the process. We conclude that epigenetic deregulation is a common feature of aging in mammals.

  M. R. H Estecio , J Gallegos , C Vallot , R. J Castoro , W Chung , S Maegawa , Y Oki , Y Kondo , J Jelinek , L Shen , H Hartung , P. D Aplan , B. A Czerniak , S Liang and J. P. J. Issa

Epigenetic silencing plays an important role in cancer development. An attractive hypothesis is that local DNA features may participate in differential predisposition to gene hypermethylation. We found that, compared with methylation-resistant genes, methylation-prone genes have a lower frequency of SINE and LINE retrotransposons near their transcription start site. In several large testing sets, this distribution was highly predictive of promoter methylation. Genome-wide analysis showed that 22% of human genes were predicted to be methylation-prone in cancer; these tended to be genes that are down-regulated in cancer and that function in developmental processes. Moreover, retrotransposon distribution marks a larger fraction of methylation-prone genes compared to Polycomb group protein (PcG) marking in embryonic stem cells; indeed, PcG marking and our predictive model based on retrotransposon frequency appear to be correlated but also complementary. In summary, our data indicate that retrotransposon elements, which are widespread in our genome, are strongly associated with gene promoter DNA methylation in cancer and may in fact play a role in influencing epigenetic regulation in normal and abnormal physiological states.

  A Mykoniatis , L Shen , M Fedor Chaiken , J Tang , X Tang , R. T Worrell , E Delpire , J. R Turner , K. S Matlin , P Bouyer and J. B. Matthews

In secretory epithelial cells, the basolateral Na+-K+-2Cl cotransporter (NKCC1) plays a major role in salt and fluid secretion. Our laboratory has identified NKCC1 surface expression as an important regulatory mechanism for Cl secretion in the colonic crypt cell line T84, a process also present in native human colonic crypts. We previously showed that activation of protein kinase C (PKC) by carbachol and phorbol 12-myristate 13-acetate (PMA) decreases NKCC1 surface expression in T84 cells. However, the specific endocytic entry pathway has not been defined. We used a Madin-Darby canine kidney (MDCK) cell line stably transfected with enhanced green fluorescent protein (EGFP)-NKCC1 to map NKCC1 entry during PMA exposure. At given times, we fixed and stained the cells with specific markers (e.g., dynamin II, clathrin heavy chain, and caveolin-1). We also used chlorpromazine, methyl-β-cyclodextrin, amiloride, and dynasore, blockers of the clathrin, caveolin, and macropinocytosis pathways and the vesicle "pinchase" dynamin, respectively. We found that PMA caused dose- and time-dependent NKCC1 endocytosis. After 2.5 min of PMA exposure, ~80% of EGFP-NKCC1 endocytic vesicles colocalized with clathrin and ~40% colocalized with dynamin II and with the transferrin receptor, the uptake of which is also mediated by clathrin-coated vesicles. We did not observe significant colocalization of EGFP-NKCC1 endocytic vesicles with caveolin-1, a marker of the caveolae-mediated endocytic pathway. We quantified the effect of each inhibitor on PMA-induced EGFP-NKCC1 endocytosis and found that only chlorpromazine and dynasore caused significant inhibition compared with the untreated control (61% and 25%, respectively, at 2.5 min). Together, these results strongly support the conclusion that PMA-stimulated NKCC1 endocytosis is associated with a clathrin pathway.

  A. M Marchiando , L Shen , W. V Graham , C. R Weber , B. T Schwarz , J. R Austin , D. R Raleigh , Y Guan , A. J. M Watson , M. H Montrose and J. R. Turner

Although tight junction morphology is not obviously affected by TNF, this proinflammatory cytokine promotes internalization of occludin, resulting in disrupted barrier function within the intestine.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility