Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by L Santhanam
Total Records ( 5 ) for L Santhanam
  C. S Thompson Torgerson , H. C Champion , L Santhanam , Z. L Harris and A. A. Shoukas

Extracorporeal circulation provides critical life support in the face of cardiopulmonary or renal failure, but it also introduces a host of unique morbidities characterized by edema formation, cardiac insufficiency, autonomic dysfunction, and altered vasomotor function. We tested the hypothesis that cyclohexanone (CHX), a solvent used in production of extracorporeal circuits and intravenous (IV) bags, leaches into the contained fluids and can replicate these clinical morbidities. Crystalloid fluid samples from circuits and IV bags were analyzed by gas chromatography-mass spectrometry to provide a range of clinical CHX exposure levels, revealing CHX contamination of sampled fluids (9.63–3,694 µg/l). In vivo rat studies were conducted (n = 49) to investigate the effects of a bolus IV infusion of CHX vs. saline alone on cardiovascular function, baroreflex responsiveness, and edema formation. Cardiovascular function was evaluated by cardiac output, heart rate, stroke volume, vascular resistance, arterial pressure, and ventricular contractility. Baroreflex function was assessed by mean femoral arterial pressure responses to bilateral carotid occlusion. Edema formation was assessed by the ratio of wet to dry organ weights for lungs, liver, kidneys, and skin. CHX infusion led to systemic hypotension; pulmonary hypertension; depressed contractility, heart rate, stroke volume, and cardiac output; and elevated vascular resistance (P < 0.05). Mean arterial pressure responsiveness to carotid occlusion was dampened after CHX infusion (from +17.25 ± 1.8 to +5.61 ± 3.2 mmHg; P < 0.05). CHX infusion led to significantly higher wet-to-dry weight ratios vs. saline only (3.8 ± 0.06 vs. 3.5 ± 0.05; P < 0.05). CHX can reproduce clinical cardiovascular, neurological, and edema morbidities associated with extracorporeal circulatory treatment.

  L Santhanam , E. C Tuday , A. K Webb , P Dowzicky , J. H Kim , Y. J Oh , G Sikka , M Kuo , M. K Halushka , A. M Macgregor , J Dunn , S Gutbrod , D Yin , A Shoukas , D Nyhan , N. A Flavahan , A. M Belkin and D. E. Berkowitz

Rationale: Although an age-related decrease in NO bioavailability contributes to vascular stiffness, the underlying molecular mechanisms remain incompletely understood. We hypothesize that NO constrains the activity of the matrix crosslinking enzyme tissue transglutaminase (TG2) via S-nitrosylation in young vessels, a process that is reversed in aging.

Objective: We sought to determine whether endothelium-dependent NO regulates TG2 activity by S-nitrosylation and whether this contributes to age-related vascular stiffness.

Methods and Results: We first demonstrate that NO suppresses activity and increases S-nitrosylation of TG2 in cellular models. Next, we show that nitric oxide synthase (NOS) inhibition leads to increased surface and extracellular matrix–associated TG2. We then demonstrate that endothelium-derived bioactive NO primarily mediates its effects through TG2, using TG2–/– mice chronically treated with the NOS inhibitor l-NG-nitroarginine methyl ester (L-NAME). We confirm that TG2 activity is modulated by endothelium-derived bioactive NO in young rat aorta. In aging rat aorta, although TG2 expression remains unaltered, its activity increases and S-nitrosylation decreases. Furthermore, TG2 inhibition decreases vascular stiffness in aging rats. Finally, TG2 activity and matrix crosslinks are augmented with age in human aorta, whereas abundance remains unchanged.

Conclusions: Decreased S-nitrosylation of TG2 and increased TG activity lead to enhanced matrix crosslinking and contribute to vascular stiffening in aging. TG2 appears to be the member of the transglutaminase family primarily contributing to this phenotype. Inhibition of TG2 could thus represent a therapeutic target for age-associated vascular stiffness and isolated systolic hypertension.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility