Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by L Neumetzler
Total Records ( 2 ) for L Neumetzler
  W Abasolo , M Eder , K Yamauchi , N Obel , A Reinecke , L Neumetzler , J. W.C Dunlop , G Mouille , M Pauly , H Hofte and I. Burgert

Plant cell walls, like a multitude of other biological materials, are natural fiber-reinforced composite materials. Their mechanical properties are highly dependent on the interplay of the stiff fibrous phase and the soft matrix phase and on the matrix deformation itself. Using specific Arabidopsis thaliana mutants, we studied the mechanical role of the matrix assembly in primary cell walls of hypocotyls with altered xyloglucan and pectin composition. Standard microtensile tests and cyclic loading protocols were performed on mur1 hypocotyls with affected RGII borate diester cross-links and a hindered xyloglucan fucosylation as well as qua2 exhibiting 50% less homogalacturonan in comparison to wild-type. As a control, wild-type plants (Col-0) and mur2 exhibiting a specific xyloglucan fucosylation and no differences in the pectin network were utilized. In the standard tensile tests, the ultimate stress levels (~tensile strength) of the hypocotyls of the mutants with pectin alterations (mur1, qua2) were rather unaffected, whereas their tensile stiffness was noticeably reduced in comparison to Col-0. The cyclic loading tests indicated a stiffening of all hypocotyls after the first cycle and a plastic deformation during the first straining, the degree of which, however, was much higher for mur1 and qua2 hypocotyls. Based on the mechanical data and current cell wall models, it is assumed that folded xyloglucan chains between cellulose fibrils may tend to unfold during straining of the hypocotyls. This response is probably hindered by geometrical constraints due to pectin rigidity.

  A Alonso Simon , L Neumetzler , P Garcia Angulo , A. E Encina , J. L Acebes , J. M Alvarez and T. Hayashi

Bean cells that have been habituated to grow in a lethal concentration (12 µM) of 2,6-dichlorobenzonitrile (dichlobenil or DCB, a cellulose biosynthesis inhibitor) are known to have decreased cellulose content in their cell walls. Xyloglucan, which is bound to cellulose and together with it forms the main loading network of plant cell walls, has also been described to decrease in habituated cells, but whether the change on cellulose affects the xyloglucan structure besides its abundance has not been analyzed. Fragmentation analysis with xyloglucan-specific endoglucanase (XEG) and endocellulase revealed that habituation to DCB caused a change in the fine structure of xyloglucan, namely a decrease in fucosyl residues attached to the galactosyl–xylosyl residues along the glucan backbone. After the removal of herbicide from the medium (dehabituated cells), xyloglucan recovered its fucosyl residues. In addition, some cello-oligosaccharides could be detected only in habituated cells' xyloglucan digested by XEG and endocellulase, corresponding to a glucan covalently bound or co-precipitated with the hemicelluloses. These results show that structural flexibility of cell walls relies in part on the plasticity of xyloglucan composition and opens up new perspectives to further research in this field.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility