Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Kundan Kumar Chaubey
Total Records ( 6 ) for Kundan Kumar Chaubey
  Brajesh Singh , Mukta Jain , S.V. Singh , Kuldeep Dhama , G.K. Aseri , Neelam Jain , Manali Datta , Neeraj Kumar , Parul Yadav , Sujata Jayaraman , Saurabh Gupta , Kundan Kumar Chaubey and Jagdip Singh Sohal
  Mycobacteria are dreadful human and animal pathogens causing range of mycobacterioses in different tissues. Due to their cell wall composition and their adaptability mycobacteria can survive in different habitats for years. Emergence of Multi-drug Resistant (MDR) and extensively drug resistant (XDR) strains has complicated the problem of mycobacterial disease control. Therefore new drugs should evolve to fight drug resistance. Medicinal plants may offer a new hope as source of bioactive molecules for developing alternative medicines for the mycobacterial diseases. Presently used anti-mycobacterial medicines produce serious side-effects and cannot be used in animals because of risk of entry into food chain. Plant derived medicines may help solving this problem and fighting the drug resistance. The present study reviews the literature available on anti- mycobacterial plants and their bioactive molecules with hope that this effort will expedite the research on development of a novel plant derived drugs against mycobacterial diseases.
  Tarun Kumar Sachan , Virendra Kumar , ShoorVir Singh , Saurabh Gupta , Kundan Kumar Chaubey , Sujata Jayaraman , Mukesh Sikarwar , Sunil Dixit and Kuldeep Dhama
  Mycobacterial biofilm is a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to an inert or living surface, which constitutes a protected mode of growth that allows survival in hostile environment. Biofilms can be defined as communities of mycobacteria attached to a surface. It is clear that microorganisms undergo profound changes during their transition from planktonic (free-swimming) organisms to cells that are part of a complex, surface-attached community. These changes are reflected in the new phenotypic characteristics developed by biofilm mycobacteria and occur in response to a variety of environmental signals. The biofilm-forming microorganisms have been shown to elicit specific mechanisms for initial attachment to a surface, formation of micro colony leading to development of three-dimensional structure of mature biofilm. They differ from their free-living counterparts in their growth rate, composition and increased resistance to biocides, antibiotics and antibodies by virtue of up regulation and/or down regulation of approximately 40% of their genes. This makes them highly difficult to eradicate with therapeutic doses of antimicrobial agents. A greater understanding of mechanism of their formation and survival under sessile environments may help in devising control strategies.
  Kundan Kumar Chaubey , Shoor Vir Singh , Saurabh Gupta , Sujata Jayaraman , Manju Singh , Bjorn John Stephan , Krishna Dutta Rawat , Anjali Pachoori , Kuldeep Dhama and Ashok Kumar Bhatia
  Cross reactivity of three antigens of Mycobacterium avium subspecies paratuberculosis with sera of sheep endemic for Johne’s disease was evaluated. Out of 40 sheep tested by fecal microscopy, 72.5% were shedding MAP. Using protoplasmic antigens (PPA) from three MAP strains isolated from different livestock species and geographical regions, 90, 77.5 and 2.5% sheep were positive in goat (Indigenous g-ELISA) and cattle (b-ELISA) based ELISA kits and ELISA kit for small ruminant (sr-ELISA), respectively. Only 2.5 and 10% sheep were positive and negative in all the four tests. Native species specific (goat origin novel ‘Indian Bison Type’ MAP) semi-purified whole cell PPA based ELISA (Indigenous g-ELISA) was superior in reacting with sera of native sheep than the commercial PPA of bovine origin (Allied Monitor Inc., USA) and commercial ELISA kit for small ruminants (ID Vet, France). Lower cross reactivity of antigens originated from US and France emphasized the need to develop tests based on local strain of MAP than strains from different livestock species and geographical regions. This is an important finding against the use of ‘Global kits’ without validating in local conditions. Study showed that kits developed from local strains of MAP were not only superior but also cost effective and will significantly contribute in programs for the control of JD in native sheep population.
  Shoor Vir Singh , Sachin Digambar Audarya , Manju Singh , Bjorn John Stephen , Daljeet Chhabra , Kundan Kumar Chaubey , Saurabh Gupta , Sahzad , Anjali Pachoori , Sujata Jayaraman , Gajendra Kumar Aseri , Jagdip Singh Sohal , Ashok Kumar Bhatia and Kuldeep Dhama
  Johne’s disease is endemic in the domestic riverine buffalo population of the country and bio-load of Mycobacterium avium subspecies paratuberculosis is increasing in the absence of indigenous diagnostic kits and control programs. A new ‘dot-ELISA kit’ has been developed and validated with indigenous plate ELISA for the screening of buffaloes against Johne’s disease. Out of 156 serum samples screened 41.0 (64), 85.8 (134) and 85.2% (133) were positive for MAP infection by indigenous plate ELISA kit condition (A), condition (B) and indigenous dot ELISA, respectively. Dot-ELISA kit detected 85.2 (133) and 90.3% (141) buffaloes as positive together with indigenous plate ELISA kit in condition A and B, respectively. Comparison of ‘Indigenous plate-ELISA’ with ‘Indigenous dot-ELISA’ revealed substantial agreement between two tests. Study showed that ‘Indigenous dot-ELISA test’ has potential to be sensitive and cost effective ‘Field based herd screening test’ for the large scale screening of the domestic livestock population against Johne’s disease. The study also showed that despite high slaughter rate, incidence of Johne’s disease was high in native population of riverine buffaloes (Bubalus bubalis) and call for immediate control of disease.
  Shoor Vir Singh , Saurabh Gupta , Kundan Kumar Chaubey , Krishna Dutta Rawat , Naveen Kumar , Jagdip Singh Sohal , Sarjeet Singh , Ruchi Tiwari , Sandip Chakraborty and Kuldeep Dhama
  Bovine Johne’s Disease (BJD) is a chronic granulomatous enteritis that affects ruminants worldwide and is having significant impact on the world economy and has been frequently reported from farm and farmer’s herds. An attack of Johne’s disease in a newly established cattle dairy farm consisting of high yielding Holstein Friesian (HF) cows in the Alwar district of Rajasthan was investigated for the first time in India. Since slaughter of cows is prohibited in India therefore management of bovine JD is critical for the success of dairy industry in the country and in this aspect the research paper is significant. Out of a total of 35 fecal samples screened by microscopy, 24 (68.5%) were positive for Mycobacterium avium subspecies paratuberculosis (MAP). Screening of 26 serum and 23 milk samples by ‘Indigenous ELISA kit’ employing semi-purified antigen of native strain (‘S 5’) of MAP, 24 (92.3%) and 14 (60.8%) were positive, respectively. Sensitivity of ‘Indigenous serum ELISA’ with reference to fecal microscopy and milk ELISA was 88.2 and 90.0%, respectively. Screening of blood samples of 14 cows, by specific PCR (IS900), 5 (35.7%) were positive. Genotyping of PCR positive HF crossbred cows using IS1311 PCR-REA showed presence of highly pathogenic ‘Indian Bison type’ genotype. Comparison of 3 tests (milk ELISA, fecal microscopy and IS900 PCR) with ‘Indigenous serum ELISA’ revealed substantial agreement between tests. Study also reported serious economic losses in terms of productivity (reduced quality and quantity of milk), reduced fertility and conception, decreased body weight and growth rate which left the farmer economy devastated due to attack of Johne’s disease in high yielding cattle herd of HF crossbred cows.
  Shoor Vir Singh , Kuldeep Dhama , Kundan Kumar Chaubey , Naveen Kumar , Pravin Kumar Singh , Jagdip Singh Sohal , Saurabh Gupta , Ajay Vir Singh , Amit Kumar Verma , Ruchi Tiwari , Mahima , S. Chakraborty and Rajib Deb
  Johne’s disease or Paratuberculosis has emerged as major infectious disease of animals in general and domestic livestock in particular on global basis. There have been major initiatives in developed countries for the control of this incurable malady of animals and human beings alike (inflammatory bowel disease or Crohn’s disease). Disease has not received similar attention due to inherent complexities of disease, diagnosis and control, in resource poor counties around the world. However, the rich genetic diverstiy of the otherwise low productive animal population offers opportunity for the control of Johne’s disease and improve per animal productivity. Present review aims to gather and compile information available on genetics or resistance to Johne’s disease and its future exploitation by resource poor countries rich in animal diversity. This review will also help to create awareness and share knowledge and experience on prevalence and opportunities for control of Johne’s disease in the livestock population to boost per animal productivity among developing and poor countries of the world. Breeding of animals for disease resistance provides good, safe, effective and cheaper way of controlling Johne’s disease in animals, with especial reference to domestic livestock of developing and poor countries. Study will help to establish better understanding of the correlation between host cell factors and resistance to MAP infection which may have ultimately help in the control of Johne’s disease in future.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility