Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Keith R. Jerome
Total Records ( 3 ) for Keith R. Jerome
  Noah G. Hoffman , Linda Cook , Ederlyn E. Atienza , Ajit P. Limaye and Keith R. Jerome
  BK virus (BKV) is the infectious cause of polyomavirus-associated nephropathy. Screening guidelines for renal-transplant recipients define levels of viremia and viruria that are actionable for additional testing or intervention. However, standardized real-time PCR primers, probes, and standards are unavailable, and the extent of agreement among published assays is unknown. We compared seven TaqMan real-time PCR primer/probe sets (three designed at this institution, three described in the literature, and one purchased) in conjunction with two different standards to prospectively measure BKV titers in 251 urine specimens submitted to our clinical laboratory. We observed substantial disagreement among assays attributable both to features of primer and probe design and to choice of reference material. The most significant source of error among individual specimens was primer or probe mismatch due to subtype-associated polymorphisms, primarily among subtype III and IV isolates. In contrast, measurement of the most abundant subtypes (Ia, V, and VI) were typically uniform among all seven assays. Finally, we describe and validate a new clinical assay designed to reliably measure all subtypes encountered in our study population (Ia, Ic, III, IV, and VI). Consideration of available BKV sequence information in conjunction with details of subtype distribution allowed us to develop a redesigned assay with markedly improved performance. These results suggest that both accurate BKV measurement and the uniform application of BKV screening guidelines could be significantly improved by the use of standardized reference materials and PCR primers and probes.
  Martine Aubert , Zheng Chen , Robin Lang , Chung H. Dang , Carla Fowler , Derek D. Sloan and Keith R. Jerome
  The Us5 gene of herpes simplex virus (HSV) encodes glycoprotein J (gJ). The only previously reported function of gJ was its ability to inhibit apoptosis. However, the mechanism by which gJ prevents apoptosis is not understood, and it is not known whether gJ mediates additional cellular effects. In this study, we evaluated the expression, localization, and cellular effects of Us5/gJ. Us5 was first expressed 4 h after infection. gJ was detectable at 6 h and was expressed in glycosylated and unglycosylated forms. Us5 was regulated as a late gene, with partial dependency on DNA replication for expression. Us5 expression was delayed in the absence of ICP22; furthermore, expression of Us5 in trans protected cells from apoptosis induced by an HSV mutant with deletion of ICP27, suggesting that the antiapoptotic effects of ICP22 and ICP27 are mediated in part through effects on gJ expression. Within HSV-infected or Us5-transfected cells, gJ was distributed widely, especially to the endoplasmic reticulum, trans-Golgi network, and early endosomes. gJ interacted with FoF1 ATP synthase subunit 6 by a yeast two-hybrid screen and had strong antiapoptotic effects, which were mediated by protein rather than mRNA. Antiapoptotic activity required the extracellular and transmembrane domains of gJ, but not the intracellular domain. Consistent with inhibition of FoF1 ATP synthase function, Us5 was required for HSV-induced reactive oxygen species (ROS) formation, and gJ was sufficient to induce ROS in Us5-transfected cells. Thus, HSV gJ is a multifunctional protein, modulating other cellular processes in addition to inhibition of apoptosis.
  George Zahariadis , Melany J. Wagner , Rosalyn C. Doepker , Jessica M. Maciejko , Carly M. Crider , Keith R. Jerome and James R. Smiley
  Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells play key roles in limiting herpesvirus infections; consequently, many herpesviruses, including herpes simplex virus (HSV), have evolved diverse strategies to evade and/or disarm these killer lymphocytes. Previous studies have shown that CTL and NK cells are functionally inactivated following contact with HSV-infected fibroblasts. During studies of the mechanisms involved, we discovered that HSV-inactivated NK-92 NK cells and Jurkat T cells contain a strikingly prominent, novel, ca. 90-kDa tyrosine-phosphorylated protein that we identified as the HSV tegument protein VP11/12. Inasmuch as VP11/12 produced in fibroblasts and epithelial cells is not obviously tyrosine phosphorylated, these data suggested that VP11/12 serves as the substrate of a cell-type-specific protein tyrosine kinase. Consistent with this hypothesis, VP11/12 was also tyrosine phosphorylated in B lymphocytes, and this modification was severely reduced in Jurkat T cells lacking the lymphocyte-specific Src family kinase Lck. These findings demonstrate that HSV tegument proteins can be differentially modified depending on the cell type infected. Our data also raise the possibility that VP11/12 may modulate one or more lymphocyte-specific signaling pathways or serve another lymphocyte-specific function. However, HSV type 1 mutants lacking the UL46 gene retained the ability to block signaling through the T-cell receptor in Jurkat cells and remained competent to functionally inactivate the NK-92 NK cell line, indicating that VP11/12 is not essential for lymphocyte inactivation. Further studies are therefore required to determine the biological function of tyrosine-phosphorylated VP11/12.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility