Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Karl G. Wooldridge
Total Records ( 2 ) for Karl G. Wooldridge
  Tehmeena Ali , Neil J. Oldfield , Karl G. Wooldridge , David P. Turner and Dlawer A. A. Ala`Aldeen
  Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a highly contagious respiratory infection in pigs. AasP, a putative subtilisin-like serine protease autotransporter, has recently been identified in A. pleuropneumoniae. We hypothesized that, similarly to other autotransporters of this type, AasP may undergo autocatalytic cleavage resulting in release of the passenger domain of the protein. Furthermore, AasP may be responsible for cleavage of other A. pleuropneumoniae outer membrane proteins. To address these hypotheses, the aasP gene was cloned and the expressed recombinant AasP protein used to raise monospecific rabbit antiserum. Immunoblot analysis of whole-cell lysates and secreted proteins demonstrated that AasP does not undergo proteolytic cleavage. Immunoblot analysis also confirmed that AasP is universally expressed by A. pleuropneumoniae. Confirmation of the maturation protease function of AasP was obtained through phenotypic analysis of an A. pleuropneumoniae aasP deletion mutant and by functional complementation. Comparison of the secreted proteins of the wild type, an aasP mutant derivative, and an aasP mutant complemented in trans led to the identification of OmlA protein fragments that were present only in the secreted-protein preparations of the wild-type and complemented strains, indicating that AasP is involved in modification of OmlA. This is the first demonstration of a function for any autotransporter protein in Actinobacillus pleuropneumoniae.
  Richard P. Spence , Victoria Wright , Dlawer A. A. Ala-Aldeen , David P. Turner , Karl G. Wooldridge and Richard James
  The human pathogen Staphylococcus aureus is isolated and characterized using traditional culture and sensitivity methodologies that are slow and offer limited information on the organism. In contrast, DNA microarray technology can provide detailed, clinically relevant information on the isolate by detecting the presence or absence of a large number of virulence-associated genes simultaneously in a single assay. We have developed and validated a novel, cost-effective multiwell microarray for the identification and characterization of Staphylococcus aureus. The array comprises 84 gene targets, including species-specific, antibiotic resistance, toxin, and other virulence-associated genes, and is capable of examining 13 different isolates simultaneously, together with a reference control strain. Analysis of S. aureus isolates whose complete genome sequences have been determined (Mu50, N315, MW2, MRSA252, MSSA476) demonstrated that the array can reliably detect the combination of genes known to be present in these isolates. Characterization of a further 43 S. aureus isolates by the microarray and pulsed-field gel electrophoresis has demonstrated the ability of the array to differentiate between isolates representative of a spectrum of S. aureus types, including methicillin-susceptible, methicillin-resistant, community-acquired, and vancomycin-resistant S. aureus, and to simultaneously detect clinically relevant virulence determinants.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility