Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by K. Nakanishi
Total Records ( 2 ) for K. Nakanishi
  K Kawa , H Tsutsui , R Uchiyama , J Kato , K Matsui , Y Iwakura , T Matsumoto and K. Nakanishi
 

Hyper-coagulation, hypothermia, systemic inflammatory responses and shock are major clinical manifestations of endotoxin shock syndrome in human. As previously reported, mice primed with heat-killed Propionibacterium acnes are highly susceptible to the action of LPS to induce tumour necrosis factor (TNF)- and to that of TNF- to trigger lethal shock. Here we investigated the mechanisms underlying the P. acnes-induced sensitization to LPS and TNF- and the development of individual symptoms after subsequent challenge with LPS or TNF-. Propionibacterium acnes-primed wild-type (WT) mice, but not naive mice, exhibited hyper-coagulation with elevated levels of thrombin–antithrombin complexes and anti-fibrinolytic plasminogen activator inhibitor 1 in their plasma, hypothermia, systemic inflammatory responses and high mortality rate after LPS or TNF- challenge. Propionibacterium acnes treatment reportedly induces both Th1 and Th17 cell development. Propionibacterium acnes-primed Il12p40–/– and Ifn–/– mice, while not Il17A–/– mice, evaded all these symptoms/signs upon LPS or TNF- challenge, indicating essential requirement of IL-12–IFN- axis for the sensitization to LPS and TNF-. Furthermore, IFN- blockade just before LPS challenge could prevent P. acnes-primed WT mice from endotoxin shock syndrome. These results demonstrated requirement of IFN- to the development of endotoxin shock and suggested it as a potent therapeutic target for the treatment of septic shock.

  M Kuroda Morimoto , H Tanaka , N Hayashi , M Nakahira , Y Imai , M Imamura , K Yasuda , S Yumikura Futatsugi , K Matsui , T Nakashima , K Sugimura , H Tsutsui , H Sano and K. Nakanishi
 

We previously reported that intranasal challenge with ovalbumin (OVA) plus IL-18 induces airway hyperresponsiveness (AHR) and eosinophilic airway inflammation in mice with OVA-specific Th1 cells. These two conditions can be prevented by neutralizing anti-IFN- and anti-IL-13 antibodies, respectively. The mice develop AHR and eosinophilic airway inflammation after challenge with OVA plus LPS instead of IL-18 and endogenous IL-18 is known to be involved. In contrast, IL-18 does not facilitate these changes in mice possessing OVA-specific Th2 cells. Here, we investigated whether IL-18 is involved in the development of asthma in mice immunized and challenged with bacterial proteins. Upon intranasal exposure to protein A (SpA) derived from Staphylococcus aureus, mice immunized with SpA exhibited AHR and peribronchial eosinophilic inflammation if IFN- or IL-13 were present, respectively. The CD4+ T cells from draining lymph nodes (DLNs) of the SpA-immunized and -challenged mice produced a robust IFN- and IL-13 in response to immobilized anti-CD3 antibodies. Treatment with neutralizing anti-IL-18 antibodies prevented asthmatic inflammation concomitant with their impaired potential to express IFN- and IL-13. Furthermore, naive mice that received the CD4+ T cells from DLNs of SpA-immunized mice developed airway inflammation depending upon the presence of IL-18. Immunodeficient mice that received human PBMCs, which had been stimulated with SpA in vitro, developed dense peribronchial accumulation of human CD4+ T cells upon SpA challenge. Neutralizing anti-human IL-18 antibodies protected against this airway inflammation. These results suggest the importance of IL-18 for the development of asthmatic inflammation associated with airway exposure to bacterial proteins.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility