Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by K. Marchillo
Total Records ( 2 ) for K. Marchillo
  D. Andes , D. J. Diekema , M. A. Pfaller , R. A. Prince , K. Marchillo , J. Ashbeck and J. Hou
  Multiple in vivo studies have characterized the pharmacodynamics of drugs from the triazole and polyene antifungal drug classes. Fewer studies have investigated these pharmacodynamic relationships for the echinocandin drug class. We used a neutropenic murine model of disseminated Candida albicans, Candida tropicalis, and Candida glabrata infection to characterize the time course of activity of the new echinocandin anidulafungin. The pharmacokinetic-pharmacodynamic (PK-PD) indices (the percentage of time that the drug concentration was above the MIC, the ratio of the area under the concentration-time curve from 0 to 24 h [AUC0-24] to the MIC, and the ratio of the maximum serum drug concentration [Cmax] to the MIC) were correlated with in vivo efficacy, as measured by organism numbers in kidney cultures after 96 h of therapy. The kinetics following intraperitoneal anidulafungin dosing in neutropenic infected mice were monitored. Peak levels and AUCs were linear over the 16-fold dose range studied. The drug elimination half-life in serum ranged from 14 to 24 h. Single-dose postantifungal-effect studies demonstrated prolonged suppression of organism regrowth after serum anidulafungin levels had fallen below the MIC. Of the four dosing intervals studied, treatment with the more widely spaced dosing regimens was most efficacious, suggesting the Cmax/MIC ratio as the PK-PD index most predictive of efficacy. Nonlinear regression analysis suggested that both the Cmax/MIC and AUC/MIC ratios were strongly predictive of treatment success. Studies were then conducted with 13 additional C. albicans, C. tropicalis, and C. glabrata isolates with various anidulafungin susceptibilities (MICs of anidulafungin for these strains, 0.015 to 2.0 µg/ml) to determine if similar Cmax/MIC and AUC0-24/MIC ratios for these isolates were associated with efficacy. The anidulafungin exposures associated with efficacy were similar among Candida species.
  D. R. Andes , D. J. Diekema , M. A. Pfaller , K. Marchillo and J. Bohrmueller
  Previous studies using in vivo candidiasis models have demonstrated that the concentration-associated pharmacodynamic indices, the maximum concentration of a drug in serum/MIC and 24-h area under the curve (AUC)/MIC, are associated with echinocandin treatment efficacy. The current investigations used a neutropenic murine model of disseminated Candida albicans and C. glabrata infection to identify the 24-h AUC/MIC index target associated with a stasis and killing endpoint for the echinocandin, micafungin. The kinetics after intraperitoneal micafungin dosing were determined in neutropenic infected mice. Peak levels and AUC values were linear over the 16-fold dose range studied. The serum drug elimination half-life ranged from 7.5 to 16 h. Treatment studies were conducted with 4 C. albicans and 10 C. glabrata isolates with micafungin MICs varying from 0.008 to 0.25 µg/ml to determine whether similar 24-h AUC/MIC ratios were associated with efficacy. The free drug AUC/MICs associated with stasis and killing (1-log) endpoints were near 10 and 20, respectively. The micafungin exposures associated with efficacy were similar for the two Candida species. Furthermore, the free drug micafungin exposures required to produce stasis and killing endpoints were similar to those recently reported for another echinocandin, anidulafungin, against the identical Candida isolates in this model.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility