Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by K. Asai
Total Records ( 4 ) for K. Asai
  M Hamada , K Sato , H Kiryu , T Mituyama and K. Asai

Motivation: Secondary structure prediction of RNA sequences is an important problem. There have been progresses in this area, but the accuracy of prediction from an RNA sequence is still limited. In many cases, however, homologous RNA sequences are available with the target RNA sequence whose secondary structure is to be predicted.

Results: In this article, we propose a new method for secondary structure predictions of individual RNA sequences by taking the information of their homologous sequences into account without assuming the common secondary structure of the entire sequences. The proposed method is based on posterior decoding techniques, which consider all the suboptimal secondary structures of the target and homologous sequences and all the suboptimal alignments between the target sequence and each of the homologous sequences. In our computational experiments, the proposed method provides better predictions than those performed only on the basis of the formation of individual RNA sequences and those performed by using methods for predicting the common secondary structure of the homologous sequences. Remarkably, we found that the common secondary predictions sometimes give worse predictions for the secondary structure of a target sequence than the predictions from the individual target sequence, while the proposed method always gives good predictions for the secondary structure of target sequences in all tested cases.

Availability: Supporting information and software are available online at:


Supplementary information:Supplementary data are available at Bioinformatics online.

  Y Tabei and K. Asai

Motivation: Non-coding RNAs (ncRNAs) show a unique evolutionary process in which the substitutions of distant bases are correlated in order to conserve the secondary structure of the ncRNA molecule. Therefore, the multiple alignment method for the detection of ncRNAs should take into account both the primary sequence and the secondary structure. Recently, there has been intense focus on multiple alignment investigations for the detection of ncRNAs; however, most of the proposed methods are designed for global multiple alignments. For this reason, these methods are not appropriate to identify locally conserved ncRNAs among genomic sequences. A more efficient local multiple alignment method for the detection of ncRNAs is required.

Results: We propose a new local multiple alignment method for the detection of ncRNAs. This method uses a local multiple alignment construction procedure inspired by ProDA, which is a local multiple aligner program for protein sequences with repeated and shuffled elements. To align sequences based on secondary structure information, we propose a new alignment model which incorporates secondary structure features. We define the conditional probability of an alignment via a conditional random field and use a -centroid estimator to align sequences. The locally aligned subsequences are clustered into blocks of approximately globally alignable subsequences between pairwise alignments. Finally, these blocks are multiply aligned via MXSCARNA. In benchmark experiments, we demonstrate the high ability of the implemented software, SCARNA_LM, for local multiple alignment for the detection of ncRNAs.

Availability: The C++ source code for SCARNA_LM and its experimental datasets are available at


Supplementary information: Supplementary data are available at Bioinformatics online.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility