Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by K. J Woollard
Total Records ( 3 ) for K. J Woollard
  S. U Eisenhardt , J Habersberger , A Murphy , Y. C Chen , K. J Woollard , N Bassler , H Qian , C von zur Muhlen , C. E Hagemeyer , I Ahrens , J Chin Dusting , A Bobik and K. Peter
 

C-reactive protein (CRP) is a predictor of cardiovascular risk. It circulates as a pentamer (pentameric CRP) in plasma. The in vivo existence of monomeric (m)CRP has been postulated, but its function and source are not clear. We show that mCRP is deposited in human aortic and carotid atherosclerotic plaques but not in healthy vessels. pCRP is found neither in healthy nor in diseased vessels. As source of mCRP, we identify a mechanism of dissociation of pCRP to mCRP. We report that activated platelets, which play a central role in cardiovascular events, mediate this dissociation via lysophosphatidylcholine, which is present on activated but not resting platelets. Furthermore, the dissociation of pCRP to mCRP can also be mediated by apoptotic monocytic THP-1 and Jurkat T cells. The functional consequence is the unmasking of proinflammatory effects of CRP as demonstrated in experimental settings that are pathophysiologically relevant for atherogenesis: compared to pCRP, mCRP induces enhanced monocyte chemotaxis; monocyte activation, as determined by conformational change of integrin Mac-1; generation of reactive oxygen species; and monocyte adhesion under static and physiological flow conditions. In conclusion, we demonstrate mCRP generation via pCRP dissociation on activated platelets and H2O2-treated apoptotic THP-1 and Jurkat T cells, thereby identifying a mechanism of localized unmasking of the proinflammatory properties of CRP. This novel mechanism provides a potential link between the established cardiovascular risk marker, circulating pCRP, and localized platelet-mediated inflammatory and proatherogenic effects.

  L Chorro , A Sarde , M Li , K. J Woollard , P Chambon , B Malissen , A Kissenpfennig , J. B Barbaroux , R Groves and F. Geissmann
 

Most tissues develop from stem cells and precursors that undergo differentiation as their proliferative potential decreases. Mature differentiated cells rarely proliferate and are replaced at the end of their life by new cells derived from precursors. Langerhans cells (LCs) of the epidermis, although of myeloid origin, were shown to renew in tissues independently from the bone marrow, suggesting the existence of a dermal or epidermal progenitor. We investigated the mechanisms involved in LC development and homeostasis. We observed that a single wave of LC precursors was recruited in the epidermis of mice around embryonic day 18 and acquired a dendritic morphology, major histocompatibility complex II, CD11c, and langerin expression immediately after birth. Langerin+ cells then undergo a massive burst of proliferation between postnatal day 2 (P2) and P7, expanding their numbers by 10–20-fold. After the first week of life, we observed low-level proliferation of langerin+ cells within the epidermis. However, in a mouse model of atopic dermatitis (AD), a keratinocyte signal triggered increased epidermal LC proliferation. Similar findings were observed in epidermis from human patients with AD. Therefore, proliferation of differentiated resident cells represents an alternative pathway for development in the newborn, homeostasis, and expansion in adults of selected myeloid cell populations such as LCs. This mechanism may be relevant in locations where leukocyte trafficking is limited.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility