Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by K. D. Makova
Total Records ( 2 ) for K. D. Makova
  E. M Kvikstad , F Chiaromonte and K. D. Makova

Recent studies have revealed that insertions and deletions (indels) are more different in their formation than previously assumed. What remains enigmatic is how the local DNA sequence context contributes to these differences. To investigate the relative impact of various molecular mechanisms to indel formation, we analyzed sequence contexts of indels in the non protein- or RNA-coding, nonrepetitive (NCNR) portion of the human genome. We considered small (≤30-bp) indels occurring in the human lineage since its divergence from chimpanzee and used wavelet techniques to study, simultaneously for multiple scales, the spatial patterns of short sequence motifs associated with indel mutagenesis. In particular, we focused on motifs associated with DNA polymerase activity, topoisomerase cleavage, double-strand breaks (DSBs), and their repair. We came to the following conclusions. First, many motifs are characterized by unique enrichment profiles in the vicinity of indels vs. indel-free portions of the genome, verifying the importance of sequence context in indel mutagenesis. Second, only limited similarity in motif frequency profiles is evident flanking insertions vs. deletions, confirming differences in their mutagenesis. Third, substantial similarity in frequency profiles exists between pairs of individual motifs flanking insertions (and separately deletions), suggesting "cooperation" among motifs, and thus molecular mechanisms, during indel formation. Fourth, the wavelet analyses demonstrate that all these patterns are highly dependent on scale (the size of an interval considered). Finally, our results depict a model of indel mutagenesis comprising both replication and recombination (via repair of paused replication forks and site-specific recombination).

  E. M Kvikstad and K. D. Makova

The densities of transposable elements (TEs) in the human genome display substantial variation both within individual chromosomes and among chromosome types (autosomes and the two sex chromosomes). Finding an explanation for this variability has been challenging, especially in light of genome landscapes unique to the sex chromosomes. Here, using a multiple regression framework, we investigate primate Alu and L1 densities shaped by regional genome features and location on a particular chromosome type. As a result of our analysis, first, we build statistical models explaining up to 79% and 44% of variation in Alu and L1 element density, respectively. Second, we analyze sex chromosome versus autosome TE densities corrected for regional genomic effects. We discover that sex-chromosome bias in Alu and L1 distributions not only persists after accounting for these effects, but even presents differences in patterns, confirming preferential Alu integration in the male germline, yet likely integration of L1s in both male and female germlines or in early embryogenesis. Additionally, our models reveal that local base composition (measured by GC content and density of L1 target sites) and natural selection (inferred via density of most conserved elements) are significant to predicting densities of L1s. Interestingly, measurements of local double-stranded breaks (a 13-mer associated with genome instability) strongly correlate with densities of Alu elements; little evidence was found for the role of recombination-driven deletion in driving TE distributions over evolutionary time. Thus, Alu and L1 densities have been influenced by the combination of distinct local genome landscapes and the unique evolutionary dynamics of sex chromosomes.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility