Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by K. D Wilson
Total Records ( 2 ) for K. D Wilson
  K. D Wilson , S Hu , S Venkatasubrahmanyam , J. D Fu , N Sun , O. J Abilez , J. J. A Baugh , F Jia , Z Ghosh , R. A Li , A. J Butte and J. C. Wu

MicroRNAs (miRNAs) are a newly discovered endogenous class of small, noncoding RNAs that play important posttranscriptional regulatory roles by targeting messenger RNAs for cleavage or translational repression. Human embryonic stem cells are known to express miRNAs that are often undetectable in adult organs, and a growing body of evidence has implicated miRNAs as important arbiters of heart development and disease.

Methods and Results—

To better understand the transition between the human embryonic and cardiac "miRNA-omes," we report here the first miRNA profiling study of cardiomyocytes derived from human embryonic stem cells. Analyzing 711 unique miRNAs, we have identified several interesting miRNAs, including miR-1, -133, and -208, that have been previously reported to be involved in cardiac development and disease and that show surprising patterns of expression across our samples. We also identified novel miRNAs, such as miR-499, that are strongly associated with cardiac differentiation and that share many predicted targets with miR-208. Overexpression of miR-499 and -1 resulted in upregulation of important cardiac myosin heavy-chain genes in embryoid bodies; miR-499 overexpression also caused upregulation of the cardiac transcription factor MEF2C.


Taken together, our data give significant insight into the regulatory networks that govern human embryonic stem cell differentiation and highlight the ability of miRNAs to perturb, and even control, the genes that are involved in cardiac specification of human embryonic stem cells.

  G Chikh , S. D de Jong , L Sekirov , S. G Raney , M Kazem , K. D Wilson , P. R Cullis , J. P Dutz and Y. K. Tam

Although it is well documented that the immunological activity of cytosine–guanine (CpG) motifs is abrogated by 5' methylation of the cytosine residue, encapsulation within stabilized lipid nanoparticles endows these methylated cytosine–guanine- (mCpG-) containing oligonucleotides (ODNs) with potent immunostimulatory activity in murine animal models. Surprisingly, not only do liposomal nanoparticulate (LN) mCpG ODN possess immunostimulatory activity, their potency is found to be equivalent and often greater than the equivalent unmethylated form, as judged by a number of ex vivo innate and adaptive immune parameters and anti-tumor efficacy in murine models. Preliminary data indicate that both methylated and unmethylated CpG ODN act through a common receptor signaling pathway, specifically via toll-like receptor (TLR) 9, based on observations of up-regulated TLR9 expression, induction of nitric oxide and dependence on endosomal maturation. This is confirmed in TLR9 knockout animals which show no immunostimulatory activity following treatment with LN-mCpG ODN. These data, therefore, indicate that the mCpG DNA is fully competent to interact with TLR9 to initiate potent immune responses. Furthermore, this work implicates an as yet unidentified mechanism upstream of TLR9 which regulates the relative activities of free methylated versus unmethylated CpG ODN that is effectively bypassed by particulate delivery of CpG ODN.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility