Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by K Zen
Total Records ( 2 ) for K Zen
  S Honsho , S Nishikawa , K Amano , K Zen , Y Adachi , E Kishita , A Matsui , A Katsume , S Yamaguchi , K Nishikawa , K Isoda , D. W.H Riches , S Matoba , M Okigaki and H. Matsubara

Rationale: It has been reported that interleukin (IL)-1 is associated with pathological cardiac remodeling and LV dilatation, whereas IL-1β has also been shown to induce cardiomyocyte hypertrophy. Thus, the role of IL-1 in the heart remains to be determined.

Objective: We studied the role of hypertrophy signal-mediated IL-1β/insulin-like growth factor (IGF)-1 production in regulating the progression from compensative pressure-mediated hypertrophy to heart failure.

Methods and Results: Pressure overload was performed by aortic banding in IL-1β–deficient mice. Primarily cultured cardiac fibroblasts (CFs) and cardiac myocytes (CMs) were exposed to cyclic stretch. Heart weight, myocyte size, and left ventricular ejection fraction were significantly lower in IL-1β–deficient mice (20%, 23% and 27%, respectively) than in the wild type 30 days after aortic banding, whereas interstitial fibrosis was markedly augmented. DNA microarray analysis revealed that IGF-1 mRNA level was markedly (50%) decreased in the IL-1β–deficient hypertrophied heart. Stretch of CFs, rather than CMs, abundantly induced the generation of IL-1β and IGF-1, whereas such IGF-1 induction was markedly decreased in IL-1β–deficient CFs. IL-1β released by stretch is at a low level unable to induce IL-6 but sufficient to stimulate IGF-1 production. Promoter analysis showed that stretch-mediated IL-1β activates JAK/STAT to transcriptionally regulate the IGF-1 gene. IL-1β deficiency markedly increased c-Jun N-terminal kinase (JNK) and caspase-3 activities and enhanced myocyte apoptosis and fibrosis, whereas replacement of IGF-1 or JNK inhibitor restored them.

Conclusions: We demonstrate for the first time that pressure-mediated hypertrophy and mechanical stretch generates a subinflammatory low level of IL-1β, which constitutively causes IGF-1 production to maintain adaptable compensation hypertrophy and inhibit interstitial fibrosis.

  C Zhang , C Wang , X Chen , C Yang , K Li , J Wang , J Dai , Z Hu , X Zhou , L Chen , Y Zhang , Y Li , H Qiu , J Xing , Z Liang , B Ren , K Zen and C. Y. Zhang

Sensitive and specific biomarkers for the early detection of esophageal squamous cell carcinoma (ESCC) are urgently needed to reduce the high morbidity and mortality of the disease. The discovery of serum microRNAs (miRNAs) and their unique concentration profiles in patients with various diseases makes them attractive, novel noninvasive biomarkers for tumor diagnosis. In this study, we investigated the serum miRNA profile in ESCC patients to develop a novel diagnostic ESCC biomarker.


Serum samples were taken from 290 ESCC patients and 140 age- and sex-matched controls. Solexa sequencing technology was used for an initial screen of miRNAs in serum samples from 141 patients and 40 controls. A hydrolysis probe–based stem–loop quantitative reverse-transcription PCR (RT-qPCR) assay was conducted in the training and verification phases to confirm the concentrations of selected miRNAs in serum samples from 149 patients and 100 controls.


The Solexa sequencing results demonstrated marked upregulation of 25 serum miRNAs in ESCC patients compared with controls. RT-qPCR analysis identified a profile of 7 serum miRNAs (miR-10a, miR-22, miR-100, miR-148b, miR-223, miR-133a, and miR-127-3p) as ESCC biomarkers. The area under the ROC curve for the selected miRNAs ranged from 0.817 to 0.949, significantly higher than for carcinoembryonic antigen (0.549; P < 0.0005). More importantly, this panel of 7 miRNAs clearly distinguished stage I/II ESCC patients from controls.


This panel of 7 serum miRNAs holds promise as a novel blood-based biomarker for the diagnosis of ESCC.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility