Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by K Matsui
Total Records ( 5 ) for K Matsui
  H Nakagawa , Y Morikawa , Y Mizuno , E Harada , T Ito , K Matsui , Y Saito and H. Yasue
 

Background— Coronary spasm plays an important role in the pathogenesis of ischemic heart disease. However, similarities and differences between coronary spasm and atherosclerosis are not known. We examined the angiographic characteristics of coronary spasm in comparison with those of atherosclerosis.

Methods and Results— Thirty-two left anterior descending arteries, 11 left circumflex arteries, and 23 right coronary arteries with spasm and atherosclerotic plaque were analyzed for the localization of spasm in comparison with that of plaque in 47 patients (38 men and 9 women, mean age 66.8±10.3 yrs). Spasm predominantly occurred at the branch point as compared with plaque in each of the 3 arteries (76.7% versus 23.3%, P<0.0001; 72.7% versus 9.1%, P<0.039; and 60.0% versus 10.0%, P=0.002, in the left anterior descending, left circumflex, and right coronary arteries, respectively). Spasm involved the proximal segment less frequently as compared with plaque in each of the 3 arteries (56.7% versus 93.3%, P<0.0001; 18.2% versus 81.8%, P=0.016; and 15.0% versus 75.0%, P<0.0001 in the left anterior descending, left circumflex, and right coronary arteries, respectively). Most spasms occurred at the nonplaque site in each of the 3 arteries (73.3%, P=0.018; 100%, P<0.0001; and 75.0%, P=0.041 in the left anterior descending, left circumflex, and right coronary arteries, respectively).

Conclusion— Coronary spasm preferentially occurred at branch points and nonplaque sites, whereas the atherosclerotic lesion was predominantly localized at the nonbranch points of the curved proximal segments. Coronary spasm may thus be a manifestation of a distinct type of arteriosclerosis different from the lipid-laden coronary atherosclerosis.

  K Kawa , H Tsutsui , R Uchiyama , J Kato , K Matsui , Y Iwakura , T Matsumoto and K. Nakanishi
 

Hyper-coagulation, hypothermia, systemic inflammatory responses and shock are major clinical manifestations of endotoxin shock syndrome in human. As previously reported, mice primed with heat-killed Propionibacterium acnes are highly susceptible to the action of LPS to induce tumour necrosis factor (TNF)- and to that of TNF- to trigger lethal shock. Here we investigated the mechanisms underlying the P. acnes-induced sensitization to LPS and TNF- and the development of individual symptoms after subsequent challenge with LPS or TNF-. Propionibacterium acnes-primed wild-type (WT) mice, but not naive mice, exhibited hyper-coagulation with elevated levels of thrombin–antithrombin complexes and anti-fibrinolytic plasminogen activator inhibitor 1 in their plasma, hypothermia, systemic inflammatory responses and high mortality rate after LPS or TNF- challenge. Propionibacterium acnes treatment reportedly induces both Th1 and Th17 cell development. Propionibacterium acnes-primed Il12p40–/– and Ifn–/– mice, while not Il17A–/– mice, evaded all these symptoms/signs upon LPS or TNF- challenge, indicating essential requirement of IL-12–IFN- axis for the sensitization to LPS and TNF-. Furthermore, IFN- blockade just before LPS challenge could prevent P. acnes-primed WT mice from endotoxin shock syndrome. These results demonstrated requirement of IFN- to the development of endotoxin shock and suggested it as a potent therapeutic target for the treatment of septic shock.

  M Kuroda Morimoto , H Tanaka , N Hayashi , M Nakahira , Y Imai , M Imamura , K Yasuda , S Yumikura Futatsugi , K Matsui , T Nakashima , K Sugimura , H Tsutsui , H Sano and K. Nakanishi
 

We previously reported that intranasal challenge with ovalbumin (OVA) plus IL-18 induces airway hyperresponsiveness (AHR) and eosinophilic airway inflammation in mice with OVA-specific Th1 cells. These two conditions can be prevented by neutralizing anti-IFN- and anti-IL-13 antibodies, respectively. The mice develop AHR and eosinophilic airway inflammation after challenge with OVA plus LPS instead of IL-18 and endogenous IL-18 is known to be involved. In contrast, IL-18 does not facilitate these changes in mice possessing OVA-specific Th2 cells. Here, we investigated whether IL-18 is involved in the development of asthma in mice immunized and challenged with bacterial proteins. Upon intranasal exposure to protein A (SpA) derived from Staphylococcus aureus, mice immunized with SpA exhibited AHR and peribronchial eosinophilic inflammation if IFN- or IL-13 were present, respectively. The CD4+ T cells from draining lymph nodes (DLNs) of the SpA-immunized and -challenged mice produced a robust IFN- and IL-13 in response to immobilized anti-CD3 antibodies. Treatment with neutralizing anti-IL-18 antibodies prevented asthmatic inflammation concomitant with their impaired potential to express IFN- and IL-13. Furthermore, naive mice that received the CD4+ T cells from DLNs of SpA-immunized mice developed airway inflammation depending upon the presence of IL-18. Immunodeficient mice that received human PBMCs, which had been stimulated with SpA in vitro, developed dense peribronchial accumulation of human CD4+ T cells upon SpA challenge. Neutralizing anti-human IL-18 antibodies protected against this airway inflammation. These results suggest the importance of IL-18 for the development of asthmatic inflammation associated with airway exposure to bacterial proteins.

  D Albinsky , M Kusano , M Higuchi , N Hayashi , M Kobayashi , A Fukushima , M Mori , T Ichikawa , K Matsui , H Kuroda , Y Horii , Y Tsumoto , H Sakakibara , H Hirochika , M Matsui and K. Saito
 

Plant metabolomics developed as a powerful tool to examine gene functions and to gain deeper insight into the physiology of the plant cell. In this study, we screened Arabidopsis lines overexpressing rice full-length (FL) cDNAs (rice FOX Arabidopsis lines) using a gas chromatography–time-of-flight mass spectrometry (GC–TOF/MS)-based technique to identify rice genes that caused metabolic changes. This screening system allows fast and reliable identification of candidate lines showing altered metabolite profiles. We performed metabolomic and transcriptomic analysis of a rice FOX Arabidopsis line that harbored the FL cDNA of the rice ortholog of the Lateral Organ Boundaries (LOB) Domain (LBD)/Asymmetric Leaves2-like (ASL) gene of Arabidopsis, At-LBD37/ASL39. The investigated rice FOX Arabidopsis line showed prominent changes in the levels of metabolites related to nitrogen metabolism. The transcriptomic data as well as the results from the metabolite analysis of the Arabidopsis At-LBD37/ASL39-overexpressor plants were consistent with these findings. Furthermore, the metabolomic and transcriptomic analysis of the Os-LBD37/ASL39-overexpressing rice plants indicated that Os-LBD37/ASL39 is associated with processes related to nitrogen metabolism in rice. Thus, the combination of a metabolomics-based screening method and a gain-of-function approach is useful for rapid characterization of novel genes in both Arabidopsis and rice.

  G. i Arimura , K Matsui and J. Takabayashi
 

In response to herbivory, plants emit specific blends of herbivore-induced plant volatiles (HIPVs). HIPVs mediate sizable arrays of interactions between plants and arthropods, microorganisms, undamaged neighboring plants or undamaged sites within the plant in various ecosystems. HIPV profiles vary according to the plant and herbivore species, and the developmental stages and conditions of the live plants and herbivores. To understand the regulatory mechanisms underling HIPV biosynthesis, the following issues are reviewed here: (i) herbivore-induced formation of plant volatile terpenoids and green leaf volatiles; (ii) initial activation of plant responses by feeding herbivores; and (iii) the downstream network of the signal transduction. To understand the ecological significance of HIPVs, we also review case studies of insect–plant and inter-/intraplant interactions mediated by HIPVs that have been documented in the field and laboratory in recent years.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility