Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by K Kano
Total Records ( 2 ) for K Kano
  H Matsumura , K Kano , C. M de Evsikova , J. A Young , P. M Nishina , J. K Naggert and K. Naito
 

Mice homozygous for the smallie (slie) mutation lack a collagen receptor, discoidin domain receptor 2 (DDR2), and are dwarfed and infertile due to peripheral dysregulation of the endocrine system of unknown etiology. We used a systems biology approach to identify biological networks affected by Ddr2slie/slie mutation in ovaries using microarray analysis and validate findings using molecular, cellular, and functional biological assays. Transcriptome analysis indicated several altered gene categories in Ddr2slie/slie mutants, including gonadal development, ovulation, antiapoptosis, and steroid hormones. Subsequent biological experiments confirmed the transcriptome analysis predictions. For instance, a significant increase of TUNEL-positive follicles was found in Ddr2slie/slie mutants vs. wild type, which confirm the transcriptome prediction for decreased chromatin maintenance and antiapoptosis. Decreases in gene expression were confirmed by RT-PCR and/or qPCR; luteinizing hormone receptor and prostaglandin type E and F receptors in Ddr2slie/slie mutants, compared with wild type, confirm hormonal signaling pathways involved in ovulation. Furthermore, deficiencies in immunohistochemistry for DDR2 and luteinizing hormone receptor in the somatic cells, but not the oocytes, of Ddr2slie/slie mutant ovaries suggest against an intrinsic defect in germ cells. Indeed, Ddr2slie/slie mutants ovulated significantly fewer oocytes; their oocytes were competent to complete meiosis and fertilization in vitro. Taken together, our convergent data signify DDR2 as a novel critical player in ovarian function, which acts upon classical endocrine pathways in somatic, rather than germline, cells.

  T Endo , K Kano , R Motoki , K Hama , S Okudaira , M Ishida , H Ogiso , M Tanaka , N Matsuki , R Taguchi , M Kanai , M Shibasaki , H Arai and J. Aoki
 

Lysophosphatidic acid (LPA) is a simple phospholipid but has numerous biological effects through a series of G-protein-coupled receptors specific to LPA. In general, LPA is short-lived when applied in vivo, which hinders most pharmacological experiments. In our continuing study to identify stable LPA analogues capable of in vivo applications, we identified here lysophosphatidylmethanol (LPM) as a stable and pan-LPA receptor agonist. A synthetic LPM activated all five LPA receptors (LPA1–5), and stimulates both cell proliferation and LPA-receptor-dependent cell motility. In addition, LPM showed a hypertensive effect in rodent when applied in vivo. We found that, when fetal calf serum was incubated in the presence of methanol, formation of LPM occurred rapidly, whereas it was completely blocked by depletion of autotaxin (ATX), a plasma enzyme that converts lysophosphatidylcholine (LPC) to LPA. When recombinant ATX was incubated with LPC in the presence of methanol, both LPM and LPA were produced with a ratio of 1:10, showing that ATX has transphosphatidylation activity in addition to its lysophospholipase D activity. Administration of methanol in mice resulted in the formation of several micromoles of LPM in plasma, which is much higher than that of LPA. The present study identified LPM as a novel and stable lysophospholipid mediator with LPA-like activities and ATX as a potential synthetic enzyme for LPM.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility