Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by K Chakir
Total Records ( 2 ) for K Chakir
  A. S Barth , T Aiba , V Halperin , D DiSilvestre , K Chakir , C Colantuoni , R. S Tunin , V. L Dimaano , W Yu , T. P Abraham , D. A Kass and G. F. Tomaselli
 

Background— Cardiac electromechanical dyssynchrony causes regional disparities in workload, oxygen consumption, and myocardial perfusion within the left ventricle. We hypothesized that such dyssynchrony also induces region-specific alterations in the myocardial transcriptome that are corrected by cardiac resynchronization therapy (CRT).

Methods and Results— Adult dogs underwent left bundle branch ablation and right atrial pacing at 200 bpm for either 6 weeks (dyssynchronous heart failure, n=12) or 3 weeks, followed by 3 weeks of resynchronization by biventricular pacing at the same pacing rate (CRT, n=10). Control animals without left bundle branch block were not paced (n=13). At 6 weeks, RNA was isolated from the anterior and lateral left ventricular (LV) walls and hybridized onto canine-specific 44K microarrays. Echocardiographically, CRT led to a significant decrease in the dyssynchrony index, while dyssynchronous heart failure and CRT animals had a comparable degree of LV dysfunction. In dyssynchronous heart failure, changes in gene expression were primarily observed in the anterior LV, resulting in increased regional heterogeneity of gene expression within the LV. Dyssynchrony-induced expression changes in 1050 transcripts were reversed by CRT to levels of nonpaced hearts (false discovery rate <5%). CRT remodeled transcripts with metabolic and cell signaling function and greatly reduced regional heterogeneity of gene expression as compared with dyssynchronous heart failure.

Conclusions— Our results demonstrate a profound effect of electromechanical dyssynchrony on the regional cardiac transcriptome, causing gene expression changes primarily in the anterior LV wall. CRT corrected the alterations in gene expression in the anterior wall, supporting a global effect of biventricular pacing on the ventricular transcriptome that extends beyond the pacing site in the lateral wall.

  G Agnetti , N Kaludercic , L. A Kane , S. T Elliott , Y Guo , K Chakir , D Samantapudi , N Paolocci , G. F Tomaselli , D. A Kass and J. E. Van Eyk
 

Background— Cardiac resynchronization therapy (CRT) improves chamber mechanoenergetics and morbidity and mortality of patients manifesting heart failure with ventricular dyssynchrony; however, little is known about the molecular changes underlying CRT benefits. We hypothesized that mitochondria may play an important role because of their involvement in energy production.

Methods and Results— Mitochondria isolated from the left ventricle in a canine model of dyssynchronous or resynchronized (CRT) heart failure were analyzed by a classical, gel-based, proteomic approach. Two-dimensional gel electrophoresis revealed that 31 mitochondrial proteins where changed when controlling the false discovery rate at 30%. Key enzymes in anaplerotic pathways, such as pyruvate carboxylation and branched-chain amino acid oxidation, were increased. These concerted changes, along with others, suggested that CRT may increase the pool of Krebs cycle intermediates and fuel oxidative phosphorylation. Nearly 50% of observed changes pertained to subunits of the respiratory chain. ATP synthase-β subunit of complex V was less degraded, and its phosphorylation modulated by CRT was associated with increased formation (2-fold, P=0.004) and specific activity (+20%, P=0.05) of the mature complex. The importance of these modifications was supported by coordinated changes in mitochondrial chaperones and proteases. CRT increased the mitochondrial respiratory control index with tightened coupling when isolated mitochondria were reexposed to substrates for both complex I (glutamate and malate) and complex II (succinate), an effect likely related to ATP synthase subunit modifications and complex quantity and activity.

Conclusions— CRT potently affects both the mitochondrial proteome and the performance associated with improved cardiac function.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility