Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Jun Ma
Total Records ( 3 ) for Jun Ma
  Jun Ma , Craig J. Dobry , Damian J. Krysan and Anuj Kumar
  The genomic architecture of the budding yeast Saccharomyces cerevisiae is typical of other eukaryotes in that genes are spatially organized into discrete and nonoverlapping units. Inherent in this organizational model is the assumption that protein-coding sequences do not overlap completely. Here, we present evidence to the contrary, defining a previously overlooked yeast gene, NAG1 (for nested antisense gene) nested entirely within the coding sequence of the YGR031W open reading frame in an antisense orientation on the opposite strand. NAG1 encodes a 19-kDa protein, detected by Western blotting of hemagglutinin (HA)-tagged Nag1p with anti-HA antibodies and by β-galactosidase analysis of a NAG1-lacZ fusion. NAG1 is evolutionarily conserved as a unit with YGR031W in bacteria and fungi. Unlike the YGR031WP protein product, however, which localizes to the mitochondria, Nag1p localizes to the cell periphery, exhibiting properties consistent with those of a plasma membrane protein. Phenotypic analysis of a site-directed mutant (nag1-1) disruptive for NAG1 but silent with respect to YGR031W, defines a role for NAG1 in yeast cell wall biogenesis; microarray profiling of nag1-1 indicates decreased expression of genes contributing to cell wall organization, and the nag1-1 mutant is hypersensitive to the cell wall-perturbing agent calcofluor white. Furthermore, production of Nag1p is dependent upon the presence of the cell wall integrity pathway mitogen-activated protein kinase Slt2p and its downstream transcription factor Rlm1p. Thus, NAG1 is important for two reasons. First, it contributes to yeast cell wall biogenesis. Second, its genomic context is novel, raising the possibility that other nested protein-coding genes may exist in eukaryotic genomes.
  Lu Shao , Yongping Bai , Xu Huang , Zhangfei Gao , Linghui Meng , Yudong Huang and Jun Ma
  For the first time, supercritical ammonia fluid was utilized to simply functionalize multi-walled carbon nanotube (MWCNT) with amino groups. The successful amino functionalization of MWCNTs was proven and the physicochemical properties of MWCNTs before and after supercritical ammonia fluids modifications were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM) and Raman spectroscopy. The results also indicated that the supercritical ammonia fluids had the visible effects on the nanostructure of carbon nanotubes. Our novel modification approach provides an easy way to modify MWCNTs with amino groups, which is very useful for realizing “carbon nanotube economy” in the near future.
  Jun Ma , Ruilan Yan , Xuyu Zu , Ji-Ming Cheng , Krishna Rao , Duan- Fang Liao and Deliang Cao
  Recent studies have demonstrated that aldo-keto reductase family 1 B10 (AKR1B10), a novel protein overexpressed in human hepatocellular carcinoma and non-small cell lung carcinoma, may facilitate cancer cell growth by detoxifying intracellular reactive carbonyls. This study presents a novel function of AKR1B10 in tumorigenic mammary epithelial cells (RAO-3), regulating fatty acid synthesis. In RAO-3 cells, Sephacryl-S 300 gel filtration and DEAE-Sepharose ion exchange chromatography demonstrated that AKR1B10 exists in two distinct forms, monomers (~40 kDa) bound to DEAE-Sepharose column and protein complexes (~300 kDa) remaining in flow-through. Co-immunoprecipitation with AKR1B10 antibody and protein mass spectrometry analysis identified that AKR1B10 associates with acetyl-CoA carboxylase-α (ACCA), a rate-limiting enzyme of de novo fatty acid synthesis. This association between AKR1B10 and ACCA proteins was further confirmed by co-immunoprecipitation with ACCA antibody and pulldown assays with recombinant AKR1B10 protein. Intracellular fluorescent studies showed that AKR1B10 and ACCA proteins co-localize in the cytoplasm of RAO-3 cells. More interestingly, small interfering RNA-mediated AKR1B10 knock down increased ACCA degradation through ubiquitination-proteasome pathway and resulted in >50% decrease of fatty acid synthesis in RAO-3 cells. These data suggest that AKR1B10 is a novel regulator of the biosynthesis of fatty acid, an essential component of the cell membrane, in breast cancer cells.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility