Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Julio C. Aguilar
Total Records ( 2 ) for Julio C. Aguilar
  Nelson Acosta-Rivero , Yaraima Aguilera , Viviana Falcon , Joanna Poutou , Alexis Musacchio , Liz Alvarez-Lajonchere , Ivis Guerra , Julio C. Alvarez-Obregon , Yalena Amador-Canizares , Gillian Martinez-Donato , Jeny Marante , Julio C. Aguilar , Yordanka Soria , Felix Alvarez , Angel Perez , Maria C. de la Rosa , Juan Morales , Juan B. Kouri and Santiago Duenas-Carrera
  Recently, it has been shown that a truncated HCV core (HCcAg) variant, covering the first 120 aa (HCcAg.120), interacts with plasmid DNA vaccine (pIDKE2), encoding the HCV structural proteins (HCcAg, E1 and E2). In the present work, HCcAg.120-pIDKE2 complexes, forming heterogeneous packaged structures, were visualized using a negative stain/rotary shadow technique. Interestingly, 72 hours after intramuscular injection of HCcAg.120-pIDKE2 complexes in Balb/c mice, E2 protein was immunolabeled in muscle cells. In fact, HCcAg.120-pIDKE2 complexes induced anti-HCV humoral and cellular immune responses in mice when inoculated by both, parenteral or mucosal routes, although intranasal administration generally rendered weaker results. On the other hand, data demonstrated that Alum enhanced the HCV-specific IgG antibody production. However, the analysis of the HCV-specific cellular immune response showed that HCcAg.120-pIDKE2 delivered in PBS by the intramuscular route induced the strongest HCV-specific lymphoproliferative response, especially against E1 and induced viremia control in a vaccinia virus surrogate challenge model. These results support the use of HCcAg.120-pIDKE2 complexes in the rational design of therapeutic or preventive vaccine strategies against HCV infection.
  Nelson Acosta-Rivero , Joanna Poutou , Alexis Mussachio , Viviana Falcon , Yaraima Aguilera , Armando Rodriguez , Angel Perez , Julio C. Aguilar , Maria C de la Rosa , Felix Alvarez , Juan Morales-Grillo , Juan Kouri and Santiago Duenas-Carrera
  Recently, it has been shown that HCV core proteins (HCcAg) with C-terminal deletions assemble in vitro into virus-like particles (VLPs) in the presence of structured RNA molecules. Results presented in this work showed that a truncated HCcAg variant covering the first 120 aa (HCcAg.120) with a 32 aa N-terminal fusion peptide (6xHistag-XpressTMepitope) interacts with plasmid DNA vaccine. Interestingly, the buoyant density of VLPs containing HCcAg.120 in CsCl gradients changed from 1.15-1,17 g mL1 to 1.30-1.34 g mL1 after addition of plasmid DNA to assembly reactions. In addition, a delay in electrophoretic mobility of HCcAg.120-plasmid samples on agarose gels was observed indicating a direct interaction between VLPs and nucleic acids. Remarkably, addition of either plasmid DNA or tRNA to assembly reactions leaded to heterogeneous and larger VLPs formation than those observed in HCcAg.120 assembly reactions. VLPs containing HCcAg.120 induced a specific IgG antibodies in mice that reacted with hepatocytes from HCV-infected patients. VLPs obtained in this work would be important to elucidate the mechanisms behind the ability of HCcAg to assemble into a nucleocapsid structure. Besides, the capacity of particles containing HCcAg.120 to interact with nucleic acids could be used in the development of DNA vaccines and viral vectors based on these particles.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility