Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Joseph Chan
Total Records ( 2 ) for Joseph Chan
  Min Du , Robert L. S. Perry , Nathaniel B. Nowacki , Joseph W. Gordon , Jahan Salma , Jianzhong Zhao , Arif Aziz , Joseph Chan , K. W. Michael Siu and John C. McDermott
  Activation of protein kinase A (PKA) by elevation of the intracellular cyclic AMP (cAMP) level inhibits skeletal myogenesis. Previously, an indirect modulation of the myogenic regulatory factors (MRFs) was implicated as the mechanism. Because myocyte enhancer factor 2 (MEF2) proteins are key regulators of myogenesis and obligatory partners for the MRFs, here we assessed whether these proteins could be involved in PKA-mediated myogenic repression. Initially, in silico analysis revealed several consensus PKA phosphoacceptor sites on MEF2, and subsequent analysis by in vitro kinase assays indicated that PKA directly and efficiently phosphorylates MEF2D. Using mass spectrometric determination of phosphorylated residues, we document that MEF2D serine 121 and serine 190 are targeted by PKA. Transcriptional reporter gene assays to assess MEF2D function revealed that PKA potently represses the transactivation properties of MEF2D. Furthermore, engineered mutation of MEF2D PKA phosphoacceptor sites (serines 121 and 190 to alanine) rendered a PKA-resistant MEF2D protein, which efficiently rescues myogenesis from PKA-mediated repression. Concomitantly, increased intracellular cAMP-mediated PKA activation also resulted in an enhanced nuclear accumulation of histone deacetylase 4 (HDAC4) and a subsequent increase in the MEF2D-HDAC4 repressor complex. Collectively, these data identify MEF2D as a primary target of PKA signaling in myoblasts that leads to inhibition of the skeletal muscle differentiation program.
  Weizhou Zhang , George Zhi Cheng , Jianli Gong , Ulrich Hermanto , Cong Susan Zong , Joseph Chan , Jin Quan Cheng and Lu- Hai Wang
  RACK1 is a 7-WD motif-containing protein with numerous downstream effectors regulating various cellular functions. Using a yeast two-hybrid screen, we identified dynein light chain 1 as a novel interacting partner of RACK1. Additionally, we demonstrated that RACK1 formed a complex with DLC1 and Bim, specifically BimEL, in the presence of apoptotic agents. Upon paclitaxel treatment, RACK1, DLC1, and CIS mediated the degradation of BimEL through the ElonginB/C-Cullin2-CIS ubiquitin-protein isopeptide ligase complex. We further showed that RACK1 conferred paclitaxel resistance to breast cancer cells in vitro and in vivo. Finally, we observed an inverse correlation between CIS and BimEL levels in both ovarian and breast cancer cell lines and specimens. Our study suggests a role of RACK1 in protecting cancer cells from apoptosis by regulating the degradation of BimEL, which together with CIS could play an important role of drug resistance in chemotherapy.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility