Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by John Q. Trojanowski
Total Records ( 3 ) for John Q. Trojanowski
  John Q. Trojanowski , Hugo Vandeerstichele , Magdalena Korecka , Christopher M. Clark , Paul S. Aisen , Ronald C. Petersen , Kaj Blennow , Holly Soares , Adam Simon , Piotr Lewczuk , Robert Dean , Eric Siemers , William Z. Potter , Michael W. Weiner , Clifford R. Jack Jr. , William Jagust , Arthur W. Toga , Virginia M.-Y. Lee and Leslie M. Shaw
  Here, we review progress by the Penn Biomarker Core in the Alzheimer's Disease Neuroimaging Initiative (ADNI) toward developing a pathological cerebrospinal fluid (CSF) and plasma biomarker signature for mild Alzheimer's disease (AD) as well as a biomarker profile that predicts conversion of mild cognitive impairment (MCI) and/or normal control subjects to AD. The Penn Biomarker Core also collaborated with other ADNI Cores to integrate data across ADNI to temporally order changes in clinical measures, imaging data, and chemical biomarkers that serve as mileposts and predictors of the conversion of normal control to MCI as well as MCI to AD, and the progression of AD. Initial CSF studies by the ADNI Biomarker Core revealed a pathological CSF biomarker signature of AD defined by the combination of Aβ1-42 and total tau (T-tau) that effectively delineates mild AD in the large multisite prospective clinical investigation conducted in ADNI. This signature appears to predict conversion from MCI to AD. Data fusion efforts across ADNI Cores generated a model for the temporal ordering of AD biomarkers which suggests that Aβ amyloid biomarkers become abnormal first, followed by changes in neurodegenerative biomarkers (CSF tau, F-18 fluorodeoxyglucose-positron emission tomography, magnetic resonance imaging) with the onset of clinical symptoms. The timing of these changes varies in individual patients due to genetic and environmental factors that increase or decrease an individual's resilience in response to progressive accumulations of AD pathologies. Further studies in ADNI will refine this model and render the biomarkers studied in ADNI more applicable to routine diagnosis and to clinical trials of disease modifying therapies.
  Paul S. Aisen , Ronald C. Petersen , Michael C. Donohue , Anthony Gamst , Rema Raman , Ronald G. Thomas , Sarah Walter , John Q. Trojanowski , Leslie M. Shaw , Laurel A. Beckett , Clifford R. Jack Jr. , William Jagust , Arthur W. Toga , Andrew J. Saykin , John C. Morris , Robert C. Green and Michael W. Weiner
  The Clinical Core of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) has provided clinical, operational, and data management support to ADNI since its inception. This article reviews the activities and accomplishments of the core in support of ADNI aims. These include the enrollment and follow-up of more than 800 subjects in the three original cohorts: healthy controls, amnestic mild cognitive impairment (now referred to as late MCI, or LMCI), and mild Alzheimer’s disease (AD) in the first phase of ADNI (ADNI 1), with baseline longitudinal, clinical, and cognitive assessments. These data, when combined with genetic, neuroimaging, and cerebrospinal fluid measures, have provided important insights into the neurobiology of the AD spectrum. Furthermore, these data have facilitated the development of novel clinical trial designs. ADNI has recently been extended with funding from an NIH Grand Opportunities (GO) award, and the new ADNI GO phase has been launched; this includes the enrollment of a new cohort, called early MCI, with milder episodic memory impairment than the LMCI group. An application for a further 5 years of ADNI funding (ADNI 2) was recently submitted. This funding would support ongoing follow-up of the original ADNI 1 and ADNI GO cohorts, as well as additional recruitment into all categories. The resulting data would provide valuable data on the earliest stages of AD, and support the development of interventions in these critically important populations.
  Michael W. Weiner , Paul S. Aisen , Clifford R. Jack Jr. , William J. Jagust , John Q. Trojanowski , Leslie Shaw , Andrew J. Saykin , John C. Morris , Nigel Cairns , Laurel A. Beckett , Arthur Toga , Robert Green , Sarah Walter , Holly Soares , Peter Snyder , Eric Siemers , William Potter , Patricia E. Cole and Mark Schmidt
  The Alzheimer’s Disease Neuroimaging Initiative (ADNI) beginning in October 2004, is a 6-year research project that studies changes of cognition, function, brain structure and function, and biomarkers in elderly controls, subjects with mild cognitive impairment, and subjects with Alzheimer’s disease (AD). A major goal is to determine and validate MRI, PET images, and cerebrospinal fluid (CSF)/blood biomarkers as predictors and outcomes for use in clinical trials of AD treatments. Structural MRI, FDG PET, C-11 Pittsburgh compound B (PIB) PET, CSF measurements of amyloid β (Aβ) and species of tau, with clinical/cognitive measurements were performed on elderly controls, subjects with mild cognitive impairment, and subjects with AD. Structural MRI shows high rates of brain atrophy, and has high statistical power for determining treatment effects. FDG PET, C-11 Pittsburgh compound B PET, and CSF measurements of Aβ and tau were significant predictors of cognitive decline and brain atrophy. All data are available at UCLA/LONI/ADNI, without embargo. ADNI-like projects started in Australia, Europe, Japan, and Korea. ADNI provides significant new information concerning the progression of AD.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility