Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by John C. Morris
Total Records ( 3 ) for John C. Morris
  Paul S. Aisen , Ronald C. Petersen , Michael C. Donohue , Anthony Gamst , Rema Raman , Ronald G. Thomas , Sarah Walter , John Q. Trojanowski , Leslie M. Shaw , Laurel A. Beckett , Clifford R. Jack Jr. , William Jagust , Arthur W. Toga , Andrew J. Saykin , John C. Morris , Robert C. Green and Michael W. Weiner
  The Clinical Core of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) has provided clinical, operational, and data management support to ADNI since its inception. This article reviews the activities and accomplishments of the core in support of ADNI aims. These include the enrollment and follow-up of more than 800 subjects in the three original cohorts: healthy controls, amnestic mild cognitive impairment (now referred to as late MCI, or LMCI), and mild Alzheimer’s disease (AD) in the first phase of ADNI (ADNI 1), with baseline longitudinal, clinical, and cognitive assessments. These data, when combined with genetic, neuroimaging, and cerebrospinal fluid measures, have provided important insights into the neurobiology of the AD spectrum. Furthermore, these data have facilitated the development of novel clinical trial designs. ADNI has recently been extended with funding from an NIH Grand Opportunities (GO) award, and the new ADNI GO phase has been launched; this includes the enrollment of a new cohort, called early MCI, with milder episodic memory impairment than the LMCI group. An application for a further 5 years of ADNI funding (ADNI 2) was recently submitted. This funding would support ongoing follow-up of the original ADNI 1 and ADNI GO cohorts, as well as additional recruitment into all categories. The resulting data would provide valuable data on the earliest stages of AD, and support the development of interventions in these critically important populations.
  Michael W. Weiner , Paul S. Aisen , Clifford R. Jack Jr. , William J. Jagust , John Q. Trojanowski , Leslie Shaw , Andrew J. Saykin , John C. Morris , Nigel Cairns , Laurel A. Beckett , Arthur Toga , Robert Green , Sarah Walter , Holly Soares , Peter Snyder , Eric Siemers , William Potter , Patricia E. Cole and Mark Schmidt
  The Alzheimer’s Disease Neuroimaging Initiative (ADNI) beginning in October 2004, is a 6-year research project that studies changes of cognition, function, brain structure and function, and biomarkers in elderly controls, subjects with mild cognitive impairment, and subjects with Alzheimer’s disease (AD). A major goal is to determine and validate MRI, PET images, and cerebrospinal fluid (CSF)/blood biomarkers as predictors and outcomes for use in clinical trials of AD treatments. Structural MRI, FDG PET, C-11 Pittsburgh compound B (PIB) PET, CSF measurements of amyloid β (Aβ) and species of tau, with clinical/cognitive measurements were performed on elderly controls, subjects with mild cognitive impairment, and subjects with AD. Structural MRI shows high rates of brain atrophy, and has high statistical power for determining treatment effects. FDG PET, C-11 Pittsburgh compound B PET, and CSF measurements of Aβ and tau were significant predictors of cognitive decline and brain atrophy. All data are available at UCLA/LONI/ADNI, without embargo. ADNI-like projects started in Australia, Europe, Japan, and Korea. ADNI provides significant new information concerning the progression of AD.
  Nigel J. Cairns , Lisa Taylor-Reinwald and John C. Morris
  Background: Our objectives are to facilitate autopsy consent, brain collection, and perform standardized neuropathologic assessments of all Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants who come to autopsy at the 58 ADNI sites in the USA and Canada. Methods: Building on the expertise and resources of the existing Alzheimer’s Disease Research Center (ADRC) at Washington University School of Medicine, St. Louis, MO, a Neuropathology Core (NPC) to serve ADNI was established with one new highly motivated research coordinator. The ADNI-NPC coordinator provides training materials and protocols to assist clinicians at ADNI sites in obtaining voluntary consent for brain autopsy in ADNI participants. Secondly, the ADNI-NPC maintains a central laboratory to provide uniform neuropathologic assessments using the operational criteria for the classification of AD and other pathologies defined by the National Alzheimer Coordinating Center (NACC). Thirdly, the ADNI-NPC maintains a state-of-the-art brain bank of ADNI-derived brain tissue to promote biomarker and multi-disciplinary clinicopathologic studies. Results: During the initial year of funding of the ADNI Neuropathology Core, there was notable improvement in the autopsy rate to 44.4%. In the most recent year of funding (September 1st, 2008 to August 31st 2009), our autopsy rate improved to 71.5%. Although the overall numbers to date are small, these data demonstrate that the Neuropathology Core has established the administrative organization with the participating sites to harvest brains from ADNI participants who come to autopsy. Conclusions: Within two years of operation, the Neuropathology Core has: (1) implemented a protocol to solicit permission for brain autopsy in ADNI participants at all 58 sites who die and (2) to send appropriate brain tissue from the decedents to the Neuropathology Core for a standardized, uniform, and state-of-the-art neuropathologic assessment. The benefit to ADNI of the implementation of the NPC is very clear. Prior to the establishment of the NPC in September 2007, there were 6 deaths but no autopsies in ADNI participants. Subsequent to the establishment of the Core there have been 17 deaths of ADNI participants and 10 autopsies. Hence, the autopsy rate has gone from 0% to 59%. The third major accomplishment is the detection of co-existent pathologies with AD in the autopsied cases. It is possible that these co-morbidities may contribute to any variance in ADNI data.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility