Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Jizhong Zhou
Total Records ( 3 ) for Jizhong Zhou
  Zhili He and Jizhong Zhou
  Signal-to-noise-ratio (SNR) thresholds for microarray data analysis were experimentally determined with an oligonucleotide array that contained perfect-match (PM) and mismatch (MM) probes based upon four genes from Shewanella oneidensis MR-1. A new SNR calculation, called the signal-to-both-standard-deviations ratio (SSDR), was developed and evaluated, along with other two methods, the signal-to-standard-deviation ratio (SSR) and the signal-to-background ratio (SBR). At a low stringency, the thresholds of the SSR, SBR, and SSDR were 2.5, 1.60, and 0.80 with an oligonucleotide and a PCR amplicon as target templates and 2.0, 1.60, and 0.70 with genomic DNAs as target templates. Slightly higher thresholds were obtained under high-stringency conditions. The thresholds of the SSR and SSDR decreased with an increase in the complexity of targets (e.g., target types) and the presence of background DNA and a decrease in the compositions of targets, while the SBR remained unchanged in all situations. The lowest percentage of false positives and false negatives was observed with the SSDR calculation method, suggesting that it may be a better SNR calculation for more accurate determination of SNR thresholds. Positive spots identified by SNR thresholds were verified by the Student t test, and consistent results were observed. This study provides general guidance for users to select appropriate SNR thresholds for different samples under different hybridization conditions.
  Erick Cardenas , Wei-Min Wu , Mary Beth Leigh , Jack Carley , Sue Carroll , Terry Gentry , Jian Luo , David Watson , Baohua Gu , Matthew Ginder-Vogel , Peter K. Kitanidis , Philip M. Jardine , Jizhong Zhou , Craig S. Criddle , Terence L. Marsh and James M. Tiedje
  Microbial enumeration, 16S rRNA gene clone libraries, and chemical analysis were used to evaluate the in situ biological reduction and immobilization of uranium(VI) in a long-term experiment (more than 2 years) conducted at a highly uranium-contaminated site (up to 60 mg/liter and 800 mg/kg solids) of the U.S. Department of Energy in Oak Ridge, TN. Bioreduction was achieved by conditioning groundwater above ground and then stimulating growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria in situ through weekly injection of ethanol into the subsurface. After nearly 2 years of intermittent injection of ethanol, aqueous U levels fell below the U.S. Environmental Protection Agency maximum contaminant level for drinking water and groundwater (<30 µg/liter or 0.126 µM). Sediment microbial communities from the treatment zone were compared with those from a control well without biostimulation. Most-probable-number estimations indicated that microorganisms implicated in bioremediation accumulated in the sediments of the treatment zone but were either absent or in very low numbers in an untreated control area. Organisms belonging to genera known to include U(VI) reducers were detected, including Desulfovibrio, Geobacter, Anaeromyxobacter, Desulfosporosinus, and Acidovorax spp. The predominant sulfate-reducing bacterial species were Desulfovibrio spp., while the iron reducers were represented by Ferribacterium spp. and Geothrix spp. Diversity-based clustering revealed differences between treated and untreated zones and also within samples of the treated area. Spatial differences in community structure within the treatment zone were likely related to the hydraulic pathway and to electron donor metabolism during biostimulation.
  Liyou Wu , Laurie Kellogg , Allan H. Devol , James M. Tiedje and Jizhong Zhou
  Marine sediments of coastal margins are important sites of carbon sequestration and nitrogen cycling. To determine the metabolic potential and structure of marine sediment microbial communities, two cores were collected each from the two stations (GMT at a depth of 200 m and GMS at 800 m) in the Gulf of Mexico, and six subsamples representing different depths were analyzed from each of these two cores using functional gene arrays containing ~2,000 probes targeting genes involved in carbon fixation; organic carbon degradation; contaminant degradation; metal resistance; and nitrogen, sulfur, and phosphorous cycling. The geochemistry was highly variable for the sediments based on both site and depth. A total of 930 (47.1%) probes belonging to various functional gene categories showed significant hybridization with at least 1 of the 12 samples. The overall functional gene diversity of the samples from shallow depths was in general lower than those from deep depths at both stations. Also high microbial heterogeneity existed in these marine sediments. In general, the microbial community structure was more similar when the samples were spatially closer. The number of unique genes at GMT increased with depth, from 1.7% at 0.75 cm to 18.9% at 25 cm. The same trend occurred at GMS, from 1.2% at 0.25 cm to 15.2% at 16 cm. In addition, a broad diversity of geochemically important metabolic functional genes related to carbon degradation, nitrification, denitrification, nitrogen fixation, sulfur reduction, phosphorus utilization, contaminant degradation, and metal resistance were observed, implying that marine sediments could play important roles in biogeochemical cycling of carbon, nitrogen, phosphorus, sulfate, and various metals. Finally, the Mantel test revealed significant positive correlations between various specific functional genes and functional processes, and canonical correspondence analysis suggested that sediment depth, PO43–, NH4+, Mn(II), porosity, and Si(OH)4 might play major roles in shaping the microbial community structure in the marine sediments.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility