Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Jianming Qiu
Total Records ( 2 ) for Jianming Qiu
  Wuxiang Guan , Fang Cheng , Yuko Yoto , Steve Kleiboeker , Susan Wong , Ning Zhi , David J. Pintel and Jianming Qiu
  The pre-mRNA processing strategy of the B19 virus is unique among parvoviruses. B19 virus-generated pre-mRNAs are transcribed from a single promoter and are extensively processed by alternative splicing and alternative polyadenylation to generate 12 transcripts. Blockage of the production of full-length B19 virus transcripts at the internal polyadenylation site [(pA)p] was previously reported to be a limiting step in B19 virus permissiveness. We show here that in the absence of genome replication, internal polyadenylation of B19 virus RNAs at (pA)p is favored in cells which are both permissive and nonpermissive for B19 viral replication. Replication of the B19 virus genome, however, introduced either by viral infection or by transfection of an infectious clone into permissive cells or forced by heterologous replication systems in nonpermissive cells, enhanced readthrough of (pA)p and the polyadenylation of B19 virus transcripts at the distal site [(pA)d]. Therefore, replication of the genome facilitates the generation of sufficient full-length transcripts that encode the viral capsid proteins and the essential 11-kDa nonstructural protein. Furthermore, we show that polyadenylation of B19 viral RNA at (pA)p likely competes with splicing at the second intron. Thus, we conclude that replication of the B19 virus genome is the primary limiting step governing B19 virus tropism.
  Xiaojian Wang , Bin Liu , Nan Li , Hongzhe Li , Jianming Qiu , Yuanyuan Zhang and Xuetao Cao
  Protein phosphatase 1 (PP1) is a major serine/threonine phosphatase that controls gene expression and cell cycle progression. Here we describe the characterization of a novel inhibitory molecule for PP1, human inhibitor-5 of protein phosphatase 1 (IPP5). We find that IPP5, containing the PP1 inhibitory subunits, specifically interacts with the PP1 catalytic subunit and inhibits PP1 phosphatase activity. Furthermore, the mutation of Thr-40 within the inhibitory subunit of IPP5 into Ala eliminates the phosphorylation of IPP5 by protein kinase A and its inhibitor activity to PP1, whereas the mutation of Thr-40 within a truncated form of IPP5 into Asp can serve as a dominant active form of IPP5 in inhibiting PP1 activity. In IPP5-negative SW480 and IPP5-highly positive SW620 human colon cancer cells, we find that overexpression of IPP5 promotes the growth and accelerates the G1-S transition of SW480 cells in a Thr-40-dependent manner, which could be reversed by downregulation of the PP1 expression. Moreover, silencing of IPP5 inhibits the growth of SW620 cells both in vitro and in nude mice possibly by inducing G0/G1 arrest but not by promoting apoptosis. According to its role in the promotion of cell cycle progression and cell growth, IPP5 up-regulates the expression of cyclin E and the phosphorylated form of retinoblastoma protein. Our findings suggest that IPP5, by acting as an inhibitory molecule for PP1, can promote tumor cell growth and cell cycle progression, and may be a promising target in cancer therapeutics in IPP5-highly expressing tumor cells.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility