Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Jeffrey A. Cole
Total Records ( 3 ) for Jeffrey A. Cole
  Debbie M. Hunt , Jose W. Saldanha , John F. Brennan , Pearline Benjamin , Molly Strom , Jeffrey A. Cole , Claire L. Spreadbury and Roger S. Buxton
  Single nucleotide polymorphisms (SNPs) are present in the global transcriptional regulator cyclic AMP (cAMP) receptor protein (CRP) of the attenuated vaccine strain Mycobacterium bovis, bacillus Calmette-Guérin (BCG). We have found that these SNPs resulted in small but significant changes in the expression of a number of genes in M. tuberculosis when a deletion of the Rv3676 CRP was complemented by the BCG allele, compared to complementation by the M. tuberculosis allele. We can explain these changes in gene expression by modeling the structure of the mycobacterial protein on the known structure of CRP from Escherichia coli. Thus, the SNP change in the DNA-binding domain, Lys178, is predicted to form a hydrogen bond with the phosphate backbone of the DNA, as does the equivalent residue in E. coli, whereas Glu178 in M. tuberculosis/M. bovis does not, thus explaining the stronger binding reported for CRP of BCG to CRP-binding sites in mycobacterial DNA. In contrast, the SNP change in the nucleotide binding domain (Leu47Pro) is predicted to result in the loss of one hydrogen bond, which is accommodated by the structure, and would not therefore be expected to cause any change in function relating to cAMP binding. The BCG allele fully complemented the growth defect caused by the deletion of the Rv3676 protein in M. tuberculosis, both in vitro and in macrophage and mouse infections, suggesting that these SNPs do not play any role in the attenuation of BCG. However, they may have allowed BCG to grow better under the in vitro-selective conditions used in its derivation from the M. bovis wild type.
  Tim W. Overton , Marta C. Justino , Ying Li , Joana M. Baptista , Ana M. P. Melo , Jeffrey A. Cole and Ligia M. Saraiva
  Expression of two genes of unknown function, Staphylococcus aureus scdA and Neisseria gonorrhoeae dnrN, is induced by exposure to oxidative or nitrosative stress. We show that DnrN and ScdA are di-iron proteins that protect their hosts from damage caused by exposure to nitric oxide and to hydrogen peroxide. Loss of FNR-dependent activation of aniA expression and NsrR-dependent repression of norB and dnrN expression on exposure to NO was restored in the gonococcal parent strain but not in a dnrN mutant, suggesting that DnrN is necessary for the repair of NO damage to the gonococcal transcription factors, FNR and NsrR. Restoration of aconitase activity destroyed by exposure of S. aureus to NO or H2O2 required a functional scdA gene. Electron paramagnetic resonance spectra of recombinant ScdA purified from Escherichia coli confirmed the presence of a di-iron center. The recombinant scdA plasmid, but not recombinant plasmids encoding the complete Escherichia coli sufABCDSE or iscRSUAhscBAfdx operons, complemented repair defects of an E. coli ytfE mutant. Analysis of the protein sequence database revealed the importance of the two proteins based on the widespread distribution of highly conserved homologues in both gram-positive and gram-negative bacteria that are human pathogens. We provide in vivo and in vitro evidence that Fe-S clusters damaged by exposure to NO and H2O2 can be repaired by this new protein family, for which we propose the name repair of iron centers, or RIC, proteins.
  Douglas F. Browning , Jeffrey A. Cole and Stephen J. W. Busby
  The Escherichia coli K-12 nir operon promoter can be fully activated by binding of the regulator of fumarate and nitrate reduction (FNR) to a site centered at position –41.5 upstream of the transcript start, and this activation is modulated by upstream binding of the integration host factor (IHF) and Fis (factor for inversion stimulation) proteins. Thus, transcription initiation is repressed by the binding of IHF and Fis to sites centered at position –88 (IHF I) and position –142 (Fis I) and activated by IHF binding to a site at position –115 (IHF II). Here, we have exploited mutational analysis and biochemistry to investigate the actions of IHF and Fis at these sites. We show that the effects of IHF and Fis are position dependent and that IHF II functions independently of IHF I and Fis I. Using in vitro assays, we report that IHF and Fis repress transcription initiation by interfering with RNA polymerase binding. Differences in the upstream IHF and Fis binding sites at the nir promoter in related enteric bacteria fix the level of nir operon expression under anaerobic growth conditions.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility