Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Jahwarhar Izuan Abdul Rashid
Total Records ( 2 ) for Jahwarhar Izuan Abdul Rashid
  Soleha Mohamat Yusuff , Ong Keat Khim , Wan Mad Zin Wan Yunus , Jahwarhar Izuan Abdul Rashid , Anwar Fitrianto , Mansor Ahmad , Nor Azowa Ibrahim , Syed Mohd Shafiq Syed Ahmad and Chin Chuang Teoh
  Dewatered alum sludge from drinking water treatment plants was exploited as carbon dioxide (CO2) adsorbent in a fixed-bed (CO2)lumn system. In this study, the effects of 6 parameters including particle size of adsorbent, heat treatment of adsorbent, adsorbents dosage, adsorption temperature, flow rate of adsorbate and (CO2) ncentration on the fixed-bed adsorption of (CO2) were investigated using Response Surface Methodology 2 2 (RSM). The experimental data was successfully fitted with the regression model to identify the significant parameters and predict the optimum value parameters for maximizing (CO2) adsorption capacity. Analysis of 2 Variance (ANOVA) revealed that (CO2) ncentration was the most significant factor influenced the (CO2) adsorption capacity. The experimental data of (CO2) adsorption capacity were in a good agreement with the 2 predicted data from the regression model. The highest fixed-bed (CO2) adsorption capacity of 10.028 mmol.g 2 –1 (441.24 mg.g–1) was achieved using 1 g of 450-500 μm of 800°C thermally treated alum sludge at (CO2) ncentration of 8000 mg.L–1 with a flow rate of 90 mL.min–1 at 25°C. The results suggested that thermally treated alum sludge is a promising solid adsorbent for (CO2) capture.
  Jahwarhar Izuan Abdul Rashid , Noraini Samat and Wan Mohtar Wan Yusoff
  Optimization of three parameters, temperature (25-35°C), moisture content (40% (w/v)-60% (w/v) and inoculum sizes (5% (w/v)-15% (w/v) were investigated and optimized by Response Surface Methodology (RSM) for optimal mannanase production by Aspergillus terreus SUK-1. A second order polynomial equation was fitted and the optimum condition was established. The result showed that the moisture content was a critical factor in terms of its effect on mannanase. The optimum condition for mannanase production was predicted at 42.86% (w/v) initial moisture (31°C) temperature and 5.5% (w/v) inoculum size . The predicted optimal parameter were tested in the laboratory and the mannanase activity 45.12 IU mL-1 were recorded to be closed to the predicted value (44.80 IU mL-1). Under the optimized SSF condition (31°C, 42.86% moisture content (w/v) and 5.5% inoculum size (w/v)), the maximum mannanase production was to prevail about 45.12 IU mL-1 compare to before optimized (30°C, 50% moisture content (w/v) and 10% inoculum size (w/v)) was only 34.42 IU mL-1.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility