Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by J. Jillian Zhang
Total Records ( 2 ) for J. Jillian Zhang
  Marylynn Snyder , Xin-Yun Huang and J. Jillian Zhang
  Signal transducer and activator of transcription 3 (Stat3) is a key regulator of gene expression in response to signaling of the glycoprotein 130 (gp130) family cytokines, including interleukin 6, oncostatin M, and leukemia inhibitory factor. Many efforts have been made to identify Stat3 target genes and to understand the mechanism of how Stat3 regulates gene expression. Using the microarray technique, hundreds of genes have been documented to be potential Stat3 target genes in different cell types. However, only a small fraction of these genes have been proven to be true direct Stat3 target genes. Here we report the identification of novel direct Stat3 target genes using a genome-wide screening procedure based on the chromatin immunoprecipitation method. These novel Stat3 target genes are involved in a diverse array of biological processes such as oncogenesis, cell growth, and differentiation. We show that Stat3 can act as both a repressor and activator on its direct target genes. We further show that most of the novel Stat3 direct target genes are dependent on Stat3 for their transcriptional regulation. In addition, using a physiological cell system, we demonstrate that Stat3 is required for the transcriptional regulation of two of the newly identified direct Stat3 target genes important for muscle differentiation.

  Lin Chen , J. Jillian Zhang and Xin- Yun Huang
  Cell migration is critical for animal development and physiological as well as pathological responses. One important step during cell migration is the formation of lamellipodia at the leading edge of migrating cells. Here we report that the second messenger cAMP inhibits the migration of mouse embryonic fibroblast cells and mouse breast tumor cells. cAMP acts downstream of the small GTPase Rac and interferes with the formation of lamellipodia. Moreover, cAMP decreases the phosphorylation of the myosin light chain at the leading edge of cells and increases the phosphorylation of the vasodilator-stimulated phosphoprotein. Together with our previous report of a positive role of another second messenger, cGMP, in lamellipodium formation, our data indicate that cAMP and cGMP play opposite roles in modulating lamellipodium formation.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility