Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by J. R Kim
Total Records ( 2 ) for J. R Kim
  C. H Seo , J. R Kim , M. S Kim and K. H. Cho
 

Motivation: Spatio-temporal regulation of gene expression is an indispensable characteristic in the development processes of all animals. ‘Master switches’, a central set of regulatory genes whose states (on/off or activated/deactivated) determine specific developmental fate or cell-fate specification, play a pivotal role for whole developmental processes. In this study on genome-wide integrative network analysis the underlying design principles of developmental gene regulatory networks are examined.

Results: We have found an intriguing design principle of developmental networks: hub nodes, genes with high connectivity, equipped with positive feedback loops are prone to function as master switches. This raises the important question of why the positive feedback loops are frequently found in these contexts. The master switches with positive feedback make the developmental signals more decisive and robust such that the overall developmental processes become more stable. This finding provides a new evolutionary insight: developmental networks might have been gradually evolved such that the master switches generate digital-like bistable signals by adopting neighboring positive feedback loops. We therefore propose that the combined presence of positive feedback loops and hub genes in regulatory networks can be used to predict plausible master switches.

  J. R Kim , H. J Kee , J. Y Kim , H Joung , K. I Nam , G. H Eom , N Choe , H. S Kim , J. C Kim , H Kook , S. B Seo and H. Kook
 

Skeletal muscle differentiation is well regulated by a series of transcription factors. We reported previously that enhancer of polycomb1 (Epc1), a chromatin protein, can modulate skeletal muscle differentiation, although the mechanisms of this action have yet to be defined. Here we report that Epc1 recruits both serum response factor (SRF) and p300 to induce skeletal muscle differentiation. Epc1 interacted physically with SRF. Transfection of Epc1 to myoblast cells potentiated the SRF-induced expression of skeletal muscle-specific genes as well as multinucleation. Proximal CArG box in the skeletal -actin promoter was responsible for the synergistic activation of the promoter-luciferase. Epc1 knockdown caused a decrease in the acetylation of histones associated with serum response element (SRE) of the skeletal -actin promoter. The Epc1·SRF complex bound to the SRE, and the knockdown of Epc1 resulted in a decrease in SRF binding to the skeletal -actin promoter. Epc1 recruited histone acetyltransferase activity, which was potentiated by cotransfection with p300 but abolished by si-p300. Epc1 directly bound to p300 in myoblast cells. Epc1+/– mice showed distortion of skeletal -actin, and the isolated myoblasts from the mice had impaired muscle differentiation. These results suggest that Epc1 is required for skeletal muscle differentiation by recruiting both SRF and p300 to the SRE of muscle-specific gene promoters.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility