Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by J. P Pais de Barros
Total Records ( 2 ) for J. P Pais de Barros
  B Verges , E Florentin , S Baillot Rudoni , J. M Petit , M. C Brindisi , J. P Pais de Barros , L Lagrost , P Gambert and L. Duvillard

Catabolism of HDL particles is accelerated in type 2 diabetes, leading to a reduction in plasma residence time, which may be detrimental. Rosuvastatin is the most powerful statin to reduce LDL-cholesterol, but its effects on HDL metabolism in type 2 diabetes remain unknown. We performed a randomized double-blind cross-over trial of 6-week treatment period with placebo or rosuvastatin 20 mg in eight patients with type 2 diabetes. An in vivo kinetic study of HDL-apolipoprotein A-I (apoA-I) with 13C leucine was performed at the end of each treatment period. Moreover, a similar kinetic study was carried out in eight nondiabetic normolipidemic controls. Rosuvastatin significantly reduced plasma LDL-cholesterol (–51%), triglycerides (TGs) (–38%), and HDL-TG (–23%). HDL-apoA-I fractional catabolic rate (FCR) was decreased by rosuvastatin (0.25 ± 0.06 vs. 0.32 ± 0.07 pool/day, P = 0.011), leading to an increase in plasma HDL-apoA-I residence time (4.21 ± 1.02 vs. 3.30 ± 0.73 day, P = 0.011). Treatment with rosuvastatin was associated with a concomitant reduction of HDL-apoA-I production rate. The decrease in HDL-apoA-I FCR, induced by rosuvastatin, was correlated with the reduction of plasma TGs and HDL-TG. HDL apoA-I FCR and production rate values in diabetic patients on rosuvastatin were not different from those found in controls. Rosuvastatin is responsible for a 22% reduction of HDL-apoA-I FCR and restores to normal the increased HDL turnover observed in type 2 diabetes. These kinetic modifications may have beneficial effects by increasing HDL plasma residence time.

  M. C Royer , S Lemaire Ewing , C Desrumaux , S Monier , J. P Pais de Barros , A Athias , D Neel and L. Lagrost

Cholesterol oxides, in particular 7-ketocholesterol, are proatherogenic compounds that induce cell death in the vascular wall when localized in lipid raft domains of the cell membrane. Deleterious effects of 7-ketocholesterol can be prevented by vitamin E, but the molecular mechanism involved is unclear. In this study, unlike -tocopherol, the -tocopherol vitamin E form was found to prevent 7-ketocholesterol-mediated apoptosis of A7R5 smooth muscle cells. To be operative, -tocopherol needed to be added to the cells before 7-ketocholesterol, and its anti-apoptotic effect was reduced and even suppressed when added together or after 7-ketocholesterol, respectively. Both pre- and co-treatment of the cells with -tocopherol resulted in the redistribution of 7-ketocholesterol out of the sphingolipid/cholesterol-enriched (lipid raft) domains. In turn, fewer amounts of -tocopherol associated with lipid rafts on 7-ketocholesterol-pretreated cells compared with untreated cells, with no prevention of cell death in this case. In further support of the implication of lipid raft domains, the dephosphorylation/inactivation of Akt-PKB was involved in the 7-ketocholesterol-induced apoptosis. Akt-PKB dephosphorylation was prevented by -tocopherol, but not -tocopherol pretreatment.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility