Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by J. M Haus
Total Records ( 3 ) for J. M Haus
  T. P. J Solomon , J. M Haus , C. M Marchetti , W. C Stanley and J. P. Kirwan
 

Elevated free fatty acids (FFA) are implicated with insulin resistance at the cellular level. However, the contribution of whole body lipid kinetics to FFA-induced insulin resistance is not well understood, and the effect of exercise and diet on this metabolic defect is not known. We investigated the effect of 12 wk of exercise training with and without caloric restriction on FFA turnover and oxidation (FFAox) during acute FFA-induced insulin resistance. Sixteen obese subjects with impaired glucose tolerance were randomized to either a hypocaloric (n = 8; –598 ± 125 kcal/day, 66 ± 1 yr, 32.8 ± 1.8 kg/m2) or a eucaloric (n = 8; 67 ± 2 yr, 35.3 ± 2.1 kg/m2) diet and aerobic exercise (1 h/day at 65% of maximal oxygen uptake) regimen. Lipid kinetics ([1-14C]palmitate) were assessed throughout a 7-h, 40 mU·m–2·min–1 hyperinsulinemic euglycemic clamp, during which insulin resistance was induced in the last 5 h by a sustained elevation in plasma FFA (intralipid/heparin infusion). Despite greater weight loss in the hypocaloric group (–7.7 ± 0.5 vs. –3.3 ± 0.7%, P < 0.001), FFA-induced peripheral insulin resistance was improved equally in both groups. However, circulating FFA concentrations (2,123 ± 261 vs. 1,764 ± 194 µmol/l, P < 0.05) and FFA turnover (3.20 ± 0.58 vs. 2.19 ± 0.58 µmol·kg FFM–1·min–1, P < 0.01) during hyperlipemia were suppressed only in the hypocaloric group. In contrast, whole body FFAox was improved in both groups at rest and during hyperlipemia. These changes were driven by increases in intracellular lipid-derived FFAox (12.3 ± 7.7 and 14.7 ± 7.8%, P < 0.05). We conclude that the exercise-induced improvement in FFA-induced insulin resistance is independent of the magnitude of weight loss and FFA turnover, yet it is linked to increased intracellular FFA utilization.

  N. A Burd , J. M Dickinson , J. K LeMoine , C. C Carroll , B. E Sullivan , J. M Haus , B Jemiolo , S. W Trappe , G. M Hughes , C. E Sanders and T. A. Trappe
 

Nonselective blockade of the cyclooxygenase (COX) enzymes in skeletal muscle eliminates the normal increase in muscle protein synthesis following resistance exercise. The current study tested the hypothesis that this COX-mediated increase in postexercise muscle protein synthesis is regulated specifically by the COX-2 isoform. Sixteen males (23 ± 1 yr) were randomly assigned to one of two groups that received three doses of either a selective COX-2 inhibitor (celecoxib; 200 mg/dose, 600 mg total) or a placebo in double-blind fashion during the 24 h following a single bout of knee extensor resistance exercise. At rest and 24 h postexercise, skeletal muscle protein fractional synthesis rate (FSR) was measured using a primed constant infusion of [2H5]phenylalanine coupled with muscle biopsies of the vastus lateralis, and measurements were made of mRNA and protein expression of COX-1 and COX-2. Mixed muscle protein FSR in response to exercise (P < 0.05) was not suppressed by the COX-2 inhibitor (0.056 ± 0.004 to 0.108 ± 0.014%/h) compared with placebo (0.074 ± 0.004 to 0.091 ± 0.005%/h), nor was there any difference (P > 0.05) between the placebo and COX-2 inhibitor postexercise when controlling for resting FSR. The COX-2 inhibitor did not influence COX-1 mRNA, COX-1 protein, or COX-2 protein levels, whereas it did increase (P < 0.05) COX-2 mRNA (3.0 ± 0.9-fold) compared with placebo (1.3 ± 0.3-fold). It appears that the elimination of the postexercise muscle protein synthesis response by nonselective COX inhibitors is not solely due to COX-2 isoform blockade. Furthermore, the current data suggest that the COX-1 enzyme is likely the main isoform responsible for the COX-mediated increase in muscle protein synthesis following resistance exercise in humans.

  Y Li , T. P. J Solomon , J. M Haus , G. M Saidel , M. E Cabrera and J. P. Kirwan
 

Identifying the mechanisms by which insulin regulates glucose metabolism in skeletal muscle is critical to understanding the etiology of insulin resistance and type 2 diabetes. Our knowledge of these mechanisms is limited by the difficulty of obtaining in vivo intracellular data. To quantitatively distinguish significant transport and metabolic mechanisms from limited experimental data, we developed a physiologically based, multiscale mathematical model of cellular metabolic dynamics in skeletal muscle. The model describes mass transport and metabolic processes including distinctive processes of the cytosol and mitochondria. The model simulated skeletal muscle metabolic responses to insulin corresponding to human hyperinsulinemic-euglycemic clamp studies. Insulin-mediated rate of glucose disposal was the primary model input. For model validation, simulations were compared with experimental data: intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase, pyruvate dehydrogenase); or M.3, parallel activation by a phenomenological insulin-mediated intracellular signal that modifies reaction rate coefficients. These simulations indicated that models M.1 and M.2 were not sufficient to explain the experimentally measured metabolic responses. However, by application of mechanism M.3, the model predicts metabolite concentration changes and glucose partitioning patterns consistent with experimental data. The reaction rate fluxes quantified by this detailed model of insulin/glucose metabolism provide information that can be used to evaluate the development of type 2 diabetes.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility