Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by J. L Vitek
Total Records ( 2 ) for J. L Vitek
  P Rabins , B. S Appleby , J Brandt , M. R DeLong , L. B Dunn , L Gabriels , B. D Greenberg , S. N Haber , P. E Holtzheimer , Z Mari , H. S Mayberg , E McCann , S. P Mink , S Rasmussen , T. E Schlaepfer , D. E Vawter , J. L Vitek , J Walkup and D. J. H. Mathews

Context  A 2-day consensus conference was held to examine scientific and ethical issues in the application of deep brain stimulation for treating mood and behavioral disorders, such as major depression, obsessive-compulsive disorder, and Tourette syndrome.

Objectives  The primary objectives of the conference were to (1) establish consensus among participants about the design of future clinical trials of deep brain stimulation for disorders of mood, behavior, and thought and (2) develop standards for the protection of human subjects participating in such studies.

Results  Conference participants identified 16 key points for guiding research in this growing field.

Conclusions  The adoption of the described guidelines would help to protect the safety and rights of research subjects who participate in clinical trials of deep brain stimulation for disorders of mood, behavior, and thought and have further potential to benefit other stakeholders in the research process, including clinical researchers and device manufactures. That said, the adoption of the guidelines will require broad and substantial commitment from many of these same stakeholders.

  A. M. M Frankemolle , J Wu , A. M Noecker , C Voelcker Rehage , J. C Ho , J. L Vitek , C. C McIntyre and J. L. Alberts

Deep brain stimulation in the subthalamic nucleus is an effective and safe surgical procedure that has been shown to reduce the motor dysfunction of patients with advanced Parkinson’s disease. Bilateral subthalamic nucleus deep brain stimulation, however, has been associated with declines in cognitive and cognitive–motor functioning. It has been hypothesized that spread of current to nonmotor areas of the subthalamic nucleus may be responsible for declines in cognitive and cognitive–motor functioning. The aim of this study was to assess the cognitive–motor performance in advanced Parkinson’s disease patients with subthalamic nucleus deep brain stimulation parameters determined clinically (Clinical) to settings derived from a patient-specific computational model (Model). Data were collected from 10 patients with advanced Parkinson’s disease bilaterally implanted with subthalamic nucleus deep brain stimulation systems. These patients were assessed off medication and under three deep brain stimulation conditions: Off, Clinical or Model based stimulation. Clinical stimulation parameters had been determined based on clinical evaluations and were stable for at least 6 months prior to study participation. Model-based parameters were selected to minimize the spread of current to nonmotor portions of the subthalamic nucleus using Cicerone Deep Brain Stimulation software. For each stimulation condition, participants performed a working memory (n-back task) and motor task (force tracking) under single- and dual-task settings. During the dual-task, participants performed the n-back and force-tracking tasks simultaneously. Clinical and Model parameters were equally effective in improving the Unified Parkinson’s disease Rating Scale III scores relative to Off deep brain stimulation scores. Single-task working memory declines, in the 2-back condition, were significantly less under Model compared with Clinical deep brain stimulation settings. Under dual-task conditions, force tracking was significantly better with Model compared with Clinical deep brain stimulation. In addition to better overall cognitive–motor performance associated with Model parameters, the amount of power consumed was on average less than half that used with the Clinical settings. These results indicate that the cognitive and cognitive–motor declines associated with bilateral subthalamic nucleus deep brain stimulation may be reversed, without compromising motor benefits, by using model-based stimulation parameters that minimize current spread into nonmotor regions of the subthalamic nucleus.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility