Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by J. J.Y Sung
Total Records ( 3 ) for J. J.Y Sung
  Y Wang , J Li , Y Cui , T Li , K. M Ng , H Geng , H Li , X. s Shu , W Liu , B Luo , Q Zhang , T. S. K Mok , W Zheng , X Qiu , G Srivastava , J Yu , J. J.Y Sung , A. T.C Chan , D Ma , Q Tao and W. Han

Closely located at the tumor suppressor locus 16q22.1, CKLF-like MARVEL transmembrane domain-containing member 3 and 4 (CMTM3 and CMTM4) encode two CMTM family proteins, which link chemokines and the transmembrane-4 superfamily. In contrast to the broad expression of both CMTM3 and CMTM4 in normal human adult tissues, only CMTM3 is silenced or down-regulated in common carcinoma (gastric, breast, nasopharyngeal, esophageal, and colon) cell lines and primary tumors. CMTM3 methylation was not detected in normal epithelial cell lines and tissues, with weak methylation present in only 5 of 35 (14%) gastric cancer adjacent normal tissues. Furthermore, immunohistochemistry showed that CMTM3 protein was absent in 12 of 35 (34%) gastric and 1 of 2 colorectal tumors, which was well correlated with its methylation status. The silencing of CMTM3 is due to aberrant promoter CpG methylation that could be reversed by pharmacologic demethylation. Ectopic expression of CMTM3 strongly suppressed the colony formation of carcinoma cell lines. In addition, CMTM3 inhibited tumor cell growth and induced apoptosis with caspase-3 activation. Thus, CMTM3 exerts tumor-suppressive functions in tumor cells, with frequent epigenetic inactivation by promoter CpG methylation in common carcinomas. [Cancer Res 2009;69(12):5194–201]

  W. P Tsang , E. K.O Ng , S. S.M Ng , H Jin , J Yu , J. J.Y Sung and T. T. Kwok

H19 is an imprinted oncofetal non-coding RNA recently shown to be the precursor of miR-675. The pathophysiological roles of H19 and its mature product miR-675 to carcinogenesis have, however, not been defined. By quantitative reverse transcription–polymerase chain reaction, both H19 and miR-675 were found to be upregulated in human colon cancer cell lines and primary human colorectal cancer (CRC) tissues compared with adjacent non-cancerous tissues. Subsequently, the tumor suppressor retinoblastoma (RB) was confirmed to be a direct target of miR-675 as the microRNA suppressed the activity of the luciferase reporter carrying the 3'-untranslated region of RB messenger RNA that contains the miR-675-binding site. Suppression of miR-675 by transfection with anti-miR-675 increased RB expression and at the same time, decreased cell growth and soft agar colony formation in human colon cancer cells. Reciprocally, enhanced miR-675 expression by transfection with miR-675 precursor decreased RB expression, increased tumor cell growth and soft agar colony formation. Moreover, the inverse relationship between the expressions of RB and H19/miR-675 was also revealed in human CRC tissues and colon cancer cell lines. Our findings demonstrate that H19-derived miR-675, through downregulation of its target RB, regulates the CRC development and thus may serve as a potential target for CRC therapy.

  J Luan , J Yuan , X Li , S Jin , L Yu , M Liao , H Zhang , C Xu , Q He , B Wen , X Zhong , X Chen , H. L.Y Chan , J. J.Y Sung , B Zhou and C. Ding

Background: Variations in the hepatitis B virus (HBV) genome may develop spontaneously or under selective pressure from antiviral therapy. Such variations may confer drug resistance or affect virus replication capacity, resulting in failure of antiviral therapy.

Methods: A duplex PCR was used to amplify the region of the reverse transcriptase gene, the precore promoter, and the basal core promoter of the HBV genome. Four multiplex primer-extension reactions were used to interrogate 60 frequently observed HBV variants during antiviral therapy. Automated MALDI-TOF mass spectrometry (MS) was used for mutation detection. Capillary sequencing was used to confirm the MS results.

Results: The limit of quantification was 1000 HBV copies/mL for multiplex detection of HBV variants. Fifty-three variants (88.3%) were analyzed successfully in at least 90% of the sera from 88 treatment-naive patients and 80 patients with virologic breakthrough. MS was able to detect twice as many minor variants as direct sequencing while achieving close to full automation. MS and direct sequencing showed only 0.1% discordance in variant calls.

Conclusions: This platform based on multiplex primer extension and MALDI-TOF MS was able to detect 60 HBV variants in 4 multiplex reactions with accuracy and low detection limits.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility